langfuse.client
1import datetime as dt 2import logging 3import os 4import re 5import time 6import tracemalloc 7import typing 8import urllib.parse 9import uuid 10import warnings 11from contextlib import contextmanager 12from dataclasses import dataclass 13from enum import Enum 14from typing import Any, Dict, List, Literal, Optional, Sequence, Union, overload 15 16import backoff 17import httpx 18 19from langfuse.api.resources.commons.types.dataset_run_with_items import ( 20 DatasetRunWithItems, 21) 22from langfuse.api.resources.commons.types.observations_view import ObservationsView 23from langfuse.api.resources.commons.types.session import Session 24from langfuse.api.resources.commons.types.trace_with_details import TraceWithDetails 25from langfuse.api.resources.datasets.types.paginated_dataset_runs import ( 26 PaginatedDatasetRuns, 27) 28from langfuse.api.resources.ingestion.types.create_event_body import CreateEventBody 29from langfuse.api.resources.ingestion.types.create_generation_body import ( 30 CreateGenerationBody, 31) 32from langfuse.api.resources.ingestion.types.create_span_body import CreateSpanBody 33from langfuse.api.resources.ingestion.types.score_body import ScoreBody 34from langfuse.api.resources.ingestion.types.sdk_log_body import SdkLogBody 35from langfuse.api.resources.ingestion.types.trace_body import TraceBody 36from langfuse.api.resources.ingestion.types.update_generation_body import ( 37 UpdateGenerationBody, 38) 39from langfuse.api.resources.ingestion.types.update_span_body import UpdateSpanBody 40from langfuse.api.resources.media import GetMediaResponse 41from langfuse.api.resources.observations.types.observations_views import ( 42 ObservationsViews, 43) 44from langfuse.api.resources.prompts.types import ( 45 CreatePromptRequest_Chat, 46 CreatePromptRequest_Text, 47 Prompt_Chat, 48 Prompt_Text, 49) 50from langfuse.api.resources.trace.types.traces import Traces 51from langfuse.api.resources.utils.resources.pagination.types.meta_response import ( 52 MetaResponse, 53) 54from langfuse.model import ( 55 ChatMessageDict, 56 ChatPromptClient, 57 CreateDatasetItemRequest, 58 CreateDatasetRequest, 59 CreateDatasetRunItemRequest, 60 DatasetItem, 61 DatasetStatus, 62 ModelUsage, 63 PromptClient, 64 TextPromptClient, 65) 66from langfuse.parse_error import handle_fern_exception 67from langfuse.prompt_cache import PromptCache 68 69try: 70 import pydantic.v1 as pydantic # type: ignore 71except ImportError: 72 import pydantic # type: ignore 73 74from langfuse._task_manager.task_manager import TaskManager 75from langfuse.api.client import AsyncFernLangfuse, FernLangfuse 76from langfuse.environment import get_common_release_envs 77from langfuse.logging import clean_logger 78from langfuse.media import LangfuseMedia 79from langfuse.model import Dataset, MapValue, Observation, TraceWithFullDetails 80from langfuse.request import LangfuseClient 81from langfuse.types import MaskFunction, ScoreDataType, SpanLevel 82from langfuse.utils import ( 83 _convert_usage_input, 84 _create_prompt_context, 85 _get_timestamp, 86) 87 88from .version import __version__ as version 89 90ENVIRONMENT_PATTERN = r"^(?!langfuse)[a-z0-9-_]+$" 91 92 93@dataclass 94class FetchTracesResponse: 95 """Response object for fetch_traces method.""" 96 97 data: typing.List[TraceWithDetails] 98 meta: MetaResponse 99 100 101@dataclass 102class FetchTraceResponse: 103 """Response object for fetch_trace method.""" 104 105 data: TraceWithFullDetails 106 107 108@dataclass 109class FetchObservationsResponse: 110 """Response object for fetch_observations method.""" 111 112 data: typing.List[ObservationsView] 113 meta: MetaResponse 114 115 116@dataclass 117class FetchObservationResponse: 118 """Response object for fetch_observation method.""" 119 120 data: Observation 121 122 123@dataclass 124class FetchMediaResponse: 125 """Response object for fetch_media method.""" 126 127 data: GetMediaResponse 128 129 130@dataclass 131class FetchSessionsResponse: 132 """Response object for fetch_sessions method.""" 133 134 data: typing.List[Session] 135 meta: MetaResponse 136 137 138class Langfuse(object): 139 """Langfuse Python client. 140 141 Attributes: 142 log (logging.Logger): Logger for the Langfuse client. 143 base_url (str): Base URL of the Langfuse API, serving as the root address for API endpoint construction. 144 httpx_client (httpx.Client): HTTPX client utilized for executing requests to the Langfuse API. 145 client (FernLangfuse): Core interface for Langfuse API interaction. 146 task_manager (TaskManager): Task Manager dedicated to handling asynchronous tasks. 147 release (str): Identifies the release number or hash of the application. 148 prompt_cache (PromptCache): A cache for efficiently storing and retrieving PromptClient instances. 149 150 Example: 151 Initiating the Langfuse client should always be first step to use Langfuse. 152 ```python 153 import os 154 from langfuse import Langfuse 155 156 # Set the public and secret keys as environment variables 157 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 158 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 159 160 # Initialize the Langfuse client using the credentials 161 langfuse = Langfuse() 162 ``` 163 """ 164 165 log = logging.getLogger("langfuse") 166 """Logger for the Langfuse client.""" 167 168 host: str 169 """Host of Langfuse API.""" 170 171 project_id: Optional[str] 172 """Project ID of the Langfuse project associated with the API keys provided.""" 173 174 def __init__( 175 self, 176 public_key: Optional[str] = None, 177 secret_key: Optional[str] = None, 178 host: Optional[str] = None, 179 release: Optional[str] = None, 180 debug: bool = False, 181 threads: Optional[int] = None, 182 flush_at: Optional[int] = None, 183 flush_interval: Optional[float] = None, 184 max_retries: Optional[int] = None, 185 timeout: Optional[int] = None, # seconds 186 sdk_integration: Optional[str] = "default", 187 httpx_client: Optional[httpx.Client] = None, 188 enabled: Optional[bool] = True, 189 sample_rate: Optional[float] = None, 190 mask: Optional[MaskFunction] = None, 191 environment: Optional[str] = None, 192 ): 193 """Initialize the Langfuse client. 194 195 Args: 196 public_key: Public API key of Langfuse project. Can be set via `LANGFUSE_PUBLIC_KEY` environment variable. 197 secret_key: Secret API key of Langfuse project. Can be set via `LANGFUSE_SECRET_KEY` environment variable. 198 host: Host of Langfuse API. Can be set via `LANGFUSE_HOST` environment variable. Defaults to `https://cloud.langfuse.com`. 199 release: Release number/hash of the application to provide analytics grouped by release. Can be set via `LANGFUSE_RELEASE` environment variable. 200 debug: Enables debug mode for more verbose logging. Can be set via `LANGFUSE_DEBUG` environment variable. 201 threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues. 202 flush_at: Max batch size that's sent to the API. 203 flush_interval: Max delay until a new batch is sent to the API. 204 max_retries: Max number of retries in case of API/network errors. 205 timeout: Timeout of API requests in seconds. Defaults to 20 seconds. 206 httpx_client: Pass your own httpx client for more customizability of requests. 207 sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly. 208 enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops. 209 sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via `LANGFUSE_SAMPLE_RATE` environment variable. 210 mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument `data` and return a serializable, masked version of the data. 211 environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via `LANGFUSE_TRACING_ENVIRONMENT` environment variable. 212 213 Raises: 214 ValueError: If public_key or secret_key are not set and not found in environment variables. 215 216 Example: 217 Initiating the Langfuse client should always be first step to use Langfuse. 218 ```python 219 import os 220 from langfuse import Langfuse 221 222 # Set the public and secret keys as environment variables 223 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 224 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 225 226 # Initialize the Langfuse client using the credentials 227 langfuse = Langfuse() 228 ``` 229 """ 230 self.enabled = enabled 231 public_key = public_key or os.environ.get("LANGFUSE_PUBLIC_KEY") 232 secret_key = secret_key or os.environ.get("LANGFUSE_SECRET_KEY") 233 sample_rate = ( 234 sample_rate 235 if sample_rate 236 is not None # needs explicit None check, as 0 is a valid value 237 else float(os.environ.get("LANGFUSE_SAMPLE_RATE", 1.0)) 238 ) 239 240 if sample_rate is not None and ( 241 sample_rate > 1 or sample_rate < 0 242 ): # default value 1 will be set in the taskmanager 243 self.enabled = False 244 self.log.warning( 245 "Langfuse client is disabled since the sample rate provided is not between 0 and 1." 246 ) 247 248 threads = threads or int(os.environ.get("LANGFUSE_THREADS", 1)) 249 flush_at = flush_at or int(os.environ.get("LANGFUSE_FLUSH_AT", 15)) 250 flush_interval = flush_interval or float( 251 os.environ.get("LANGFUSE_FLUSH_INTERVAL", 0.5) 252 ) 253 254 max_retries = max_retries or int(os.environ.get("LANGFUSE_MAX_RETRIES", 3)) 255 timeout = timeout or int(os.environ.get("LANGFUSE_TIMEOUT", 20)) 256 257 if not self.enabled: 258 self.log.warning( 259 "Langfuse client is disabled. No observability data will be sent." 260 ) 261 262 elif not public_key: 263 self.enabled = False 264 self.log.warning( 265 "Langfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 266 ) 267 268 elif not secret_key: 269 self.enabled = False 270 self.log.warning( 271 "Langfuse client is disabled since no secret_key was provided as a parameter or environment variable 'LANGFUSE_SECRET_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 272 ) 273 274 set_debug = debug if debug else (os.getenv("LANGFUSE_DEBUG", "False") == "True") 275 276 if set_debug is True: 277 # Ensures that debug level messages are logged when debug mode is on. 278 # Otherwise, defaults to WARNING level. 279 # See https://docs.python.org/3/howto/logging.html#what-happens-if-no-configuration-is-provided 280 logging.basicConfig() 281 # Set level for all loggers under langfuse package 282 logging.getLogger("langfuse").setLevel(logging.DEBUG) 283 284 clean_logger() 285 else: 286 logging.getLogger("langfuse").setLevel(logging.WARNING) 287 clean_logger() 288 289 self.base_url = ( 290 host 291 if host 292 else os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") 293 ) 294 295 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 296 297 if self.environment and not bool( 298 re.match(ENVIRONMENT_PATTERN, self.environment) 299 ): 300 self.log.error( 301 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Events will be rejected by Langfuse servers.' 302 ) 303 304 self.httpx_client = httpx_client or httpx.Client(timeout=timeout) 305 306 public_api_client = FernLangfuse( 307 base_url=self.base_url, 308 username=public_key, 309 password=secret_key, 310 x_langfuse_sdk_name="python", 311 x_langfuse_sdk_version=version, 312 x_langfuse_public_key=public_key, 313 httpx_client=self.httpx_client, 314 timeout=timeout, 315 ) 316 async_public_api_client = AsyncFernLangfuse( 317 base_url=self.base_url, 318 username=public_key, 319 password=secret_key, 320 x_langfuse_sdk_name="python", 321 x_langfuse_sdk_version=version, 322 x_langfuse_public_key=public_key, 323 timeout=timeout, 324 ) 325 326 self.api = public_api_client 327 self.client = public_api_client # legacy, to be removed in next major release 328 self.async_api = async_public_api_client 329 330 langfuse_client = LangfuseClient( 331 public_key=public_key, 332 secret_key=secret_key, 333 base_url=self.base_url, 334 version=version, 335 timeout=timeout, 336 session=self.httpx_client, 337 ) 338 339 args = { 340 "threads": threads, 341 "flush_at": flush_at, 342 "flush_interval": flush_interval, 343 "max_retries": max_retries, 344 "client": langfuse_client, 345 "api_client": self.client, 346 "public_key": public_key, 347 "sdk_name": "python", 348 "sdk_version": version, 349 "sdk_integration": sdk_integration, 350 "enabled": self.enabled, 351 "sample_rate": sample_rate, 352 "mask": mask, 353 } 354 355 self.task_manager = TaskManager(**args) 356 357 self.trace_id = None 358 self.project_id = None 359 360 self.release = self._get_release_value(release) 361 362 self.prompt_cache = PromptCache() 363 364 def _get_release_value(self, release: Optional[str] = None) -> Optional[str]: 365 if release: 366 return release 367 elif "LANGFUSE_RELEASE" in os.environ: 368 return os.environ["LANGFUSE_RELEASE"] 369 else: 370 return get_common_release_envs() 371 372 def _get_project_id(self) -> Optional[str]: 373 """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys.""" 374 if not self.project_id: 375 proj = self.client.projects.get() 376 if not proj.data or not proj.data[0].id: 377 return None 378 379 self.project_id = proj.data[0].id 380 381 return self.project_id 382 383 def get_trace_id(self) -> str: 384 """Get the current trace id.""" 385 return self.trace_id 386 387 def get_trace_url(self) -> str: 388 """Get the URL of the current trace to view it in the Langfuse UI.""" 389 project_id = self._get_project_id() 390 if not project_id: 391 return f"{self.base_url}/trace/{self.trace_id}" 392 393 return f"{self.base_url}/project/{project_id}/traces/{self.trace_id}" 394 395 def get_dataset( 396 self, name: str, *, fetch_items_page_size: Optional[int] = 50 397 ) -> "DatasetClient": 398 """Fetch a dataset by its name. 399 400 Args: 401 name (str): The name of the dataset to fetch. 402 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 403 404 Returns: 405 DatasetClient: The dataset with the given name. 406 """ 407 try: 408 self.log.debug(f"Getting datasets {name}") 409 dataset = self.client.datasets.get(dataset_name=name) 410 411 dataset_items = [] 412 page = 1 413 while True: 414 new_items = self.client.dataset_items.list( 415 dataset_name=self._url_encode(name), 416 page=page, 417 limit=fetch_items_page_size, 418 ) 419 dataset_items.extend(new_items.data) 420 if new_items.meta.total_pages <= page: 421 break 422 page += 1 423 424 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 425 426 return DatasetClient(dataset, items=items) 427 except Exception as e: 428 handle_fern_exception(e) 429 raise e 430 431 def get_dataset_item(self, id: str) -> "DatasetItemClient": 432 """Get the dataset item with the given id.""" 433 try: 434 self.log.debug(f"Getting dataset item {id}") 435 dataset_item = self.client.dataset_items.get(id=id) 436 return DatasetItemClient(dataset_item, langfuse=self) 437 except Exception as e: 438 handle_fern_exception(e) 439 raise e 440 441 def auth_check(self) -> bool: 442 """Check if the provided credentials (public and secret key) are valid. 443 444 Raises: 445 Exception: If no projects were found for the provided credentials. 446 447 Note: 448 This method is blocking. It is discouraged to use it in production code. 449 """ 450 try: 451 projects = self.client.projects.get() 452 self.log.debug( 453 f"Auth check successful, found {len(projects.data)} projects" 454 ) 455 if len(projects.data) == 0: 456 raise Exception( 457 "Auth check failed, no project found for the keys provided." 458 ) 459 return True 460 461 except Exception as e: 462 handle_fern_exception(e) 463 raise e 464 465 def get_dataset_runs( 466 self, 467 dataset_name: str, 468 *, 469 page: typing.Optional[int] = None, 470 limit: typing.Optional[int] = None, 471 ) -> PaginatedDatasetRuns: 472 """Get all dataset runs. 473 474 Args: 475 dataset_name (str): Name of the dataset. 476 page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None. 477 limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50. 478 479 Returns: 480 PaginatedDatasetRuns: The dataset runs. 481 """ 482 try: 483 self.log.debug("Getting dataset runs") 484 return self.client.datasets.get_runs( 485 dataset_name=self._url_encode(dataset_name), page=page, limit=limit 486 ) 487 except Exception as e: 488 handle_fern_exception(e) 489 raise e 490 491 def get_dataset_run( 492 self, 493 dataset_name: str, 494 dataset_run_name: str, 495 ) -> DatasetRunWithItems: 496 """Get a dataset run. 497 498 Args: 499 dataset_name: Name of the dataset. 500 dataset_run_name: Name of the dataset run. 501 502 Returns: 503 DatasetRunWithItems: The dataset run. 504 """ 505 try: 506 self.log.debug( 507 f"Getting dataset runs for dataset {dataset_name} and run {dataset_run_name}" 508 ) 509 return self.client.datasets.get_run( 510 dataset_name=self._url_encode(dataset_name), 511 run_name=self._url_encode(dataset_run_name), 512 ) 513 except Exception as e: 514 handle_fern_exception(e) 515 raise e 516 517 def create_dataset( 518 self, 519 name: str, 520 description: Optional[str] = None, 521 metadata: Optional[Any] = None, 522 ) -> Dataset: 523 """Create a dataset with the given name on Langfuse. 524 525 Args: 526 name: Name of the dataset to create. 527 description: Description of the dataset. Defaults to None. 528 metadata: Additional metadata. Defaults to None. 529 530 Returns: 531 Dataset: The created dataset as returned by the Langfuse API. 532 """ 533 try: 534 body = CreateDatasetRequest( 535 name=name, description=description, metadata=metadata 536 ) 537 self.log.debug(f"Creating datasets {body}") 538 return self.client.datasets.create(request=body) 539 except Exception as e: 540 handle_fern_exception(e) 541 raise e 542 543 def create_dataset_item( 544 self, 545 dataset_name: str, 546 input: Optional[Any] = None, 547 expected_output: Optional[Any] = None, 548 metadata: Optional[Any] = None, 549 source_trace_id: Optional[str] = None, 550 source_observation_id: Optional[str] = None, 551 status: Optional[DatasetStatus] = None, 552 id: Optional[str] = None, 553 ) -> DatasetItem: 554 """Create a dataset item. 555 556 Upserts if an item with id already exists. 557 558 Args: 559 dataset_name: Name of the dataset in which the dataset item should be created. 560 input: Input data. Defaults to None. Can contain any dict, list or scalar. 561 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 562 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 563 source_trace_id: Id of the source trace. Defaults to None. 564 source_observation_id: Id of the source observation. Defaults to None. 565 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 566 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 567 568 Returns: 569 DatasetItem: The created dataset item as returned by the Langfuse API. 570 571 Example: 572 ```python 573 from langfuse import Langfuse 574 575 langfuse = Langfuse() 576 577 # Uploading items to the Langfuse dataset named "capital_cities" 578 langfuse.create_dataset_item( 579 dataset_name="capital_cities", 580 input={"input": {"country": "Italy"}}, 581 expected_output={"expected_output": "Rome"}, 582 metadata={"foo": "bar"} 583 ) 584 ``` 585 """ 586 try: 587 body = CreateDatasetItemRequest( 588 datasetName=dataset_name, 589 input=input, 590 expectedOutput=expected_output, 591 metadata=metadata, 592 sourceTraceId=source_trace_id, 593 sourceObservationId=source_observation_id, 594 status=status, 595 id=id, 596 ) 597 self.log.debug(f"Creating dataset item {body}") 598 return self.client.dataset_items.create(request=body) 599 except Exception as e: 600 handle_fern_exception(e) 601 raise e 602 603 def fetch_trace( 604 self, 605 id: str, 606 ) -> FetchTraceResponse: 607 """Fetch a trace via the Langfuse API by its id. 608 609 Args: 610 id: The id of the trace to fetch. 611 612 Returns: 613 FetchTraceResponse: The trace with full details as returned by the Langfuse API on `data`. 614 615 Raises: 616 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 617 """ 618 try: 619 self.log.debug(f"Getting trace {id}") 620 trace = self.client.trace.get(id) 621 return FetchTraceResponse(data=trace) 622 except Exception as e: 623 handle_fern_exception(e) 624 raise e 625 626 def get_trace( 627 self, 628 id: str, 629 ) -> TraceWithFullDetails: 630 """Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead. 631 632 Args: 633 id: The id of the trace to fetch. 634 635 Returns: 636 TraceWithFullDetails: The trace with full details as returned by the Langfuse API. 637 638 Raises: 639 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 640 """ 641 warnings.warn( 642 "get_trace is deprecated, use fetch_trace instead.", 643 DeprecationWarning, 644 ) 645 646 try: 647 self.log.debug(f"Getting trace {id}") 648 return self.client.trace.get(id) 649 except Exception as e: 650 handle_fern_exception(e) 651 raise e 652 653 def fetch_traces( 654 self, 655 *, 656 page: Optional[int] = None, 657 limit: Optional[int] = None, 658 user_id: Optional[str] = None, 659 name: Optional[str] = None, 660 session_id: Optional[str] = None, 661 from_timestamp: Optional[dt.datetime] = None, 662 to_timestamp: Optional[dt.datetime] = None, 663 environment: Optional[Union[str, Sequence[str]]] = None, 664 order_by: Optional[str] = None, 665 tags: Optional[Union[str, Sequence[str]]] = None, 666 ) -> FetchTracesResponse: 667 """Fetch a list of traces in the current project matching the given parameters. 668 669 Args: 670 page (Optional[int]): Page number, starts at 1. Defaults to None. 671 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 672 name (Optional[str]): Filter by name of traces. Defaults to None. 673 user_id (Optional[str]): Filter by user_id. Defaults to None. 674 session_id (Optional[str]): Filter by session_id. Defaults to None. 675 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 676 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 677 environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None. 678 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 679 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 680 681 Returns: 682 FetchTracesResponse, list of traces on `data` and metadata on `meta`. 683 684 Raises: 685 Exception: If an error occurred during the request. 686 """ 687 try: 688 self.log.debug( 689 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {environment}, {order_by}, {tags}" 690 ) 691 res = self.client.trace.list( 692 page=page, 693 limit=limit, 694 name=name, 695 user_id=user_id, 696 session_id=session_id, 697 from_timestamp=from_timestamp, 698 to_timestamp=to_timestamp, 699 environment=environment, 700 order_by=order_by, 701 tags=tags, 702 ) 703 return FetchTracesResponse(data=res.data, meta=res.meta) 704 except Exception as e: 705 handle_fern_exception(e) 706 raise e 707 708 def get_traces( 709 self, 710 *, 711 page: Optional[int] = None, 712 limit: Optional[int] = None, 713 user_id: Optional[str] = None, 714 name: Optional[str] = None, 715 session_id: Optional[str] = None, 716 from_timestamp: Optional[dt.datetime] = None, 717 to_timestamp: Optional[dt.datetime] = None, 718 order_by: Optional[str] = None, 719 tags: Optional[Union[str, Sequence[str]]] = None, 720 ) -> Traces: 721 """Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead. 722 723 Args: 724 page (Optional[int]): Page number, starts at 1. Defaults to None. 725 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 726 name (Optional[str]): Filter by name of traces. Defaults to None. 727 user_id (Optional[str]): Filter by user_id. Defaults to None. 728 session_id (Optional[str]): Filter by session_id. Defaults to None. 729 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 730 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 731 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 732 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 733 734 Returns: 735 List of Traces 736 737 Raises: 738 Exception: If an error occurred during the request. 739 """ 740 warnings.warn( 741 "get_traces is deprecated, use fetch_traces instead.", 742 DeprecationWarning, 743 ) 744 try: 745 self.log.debug( 746 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 747 ) 748 return self.client.trace.list( 749 page=page, 750 limit=limit, 751 name=name, 752 user_id=user_id, 753 session_id=session_id, 754 from_timestamp=from_timestamp, 755 to_timestamp=to_timestamp, 756 order_by=order_by, 757 tags=tags, 758 ) 759 except Exception as e: 760 handle_fern_exception(e) 761 raise e 762 763 def fetch_observations( 764 self, 765 *, 766 page: typing.Optional[int] = None, 767 limit: typing.Optional[int] = None, 768 name: typing.Optional[str] = None, 769 user_id: typing.Optional[str] = None, 770 trace_id: typing.Optional[str] = None, 771 parent_observation_id: typing.Optional[str] = None, 772 from_start_time: typing.Optional[dt.datetime] = None, 773 to_start_time: typing.Optional[dt.datetime] = None, 774 environment: Optional[Union[str, Sequence[str]]] = None, 775 type: typing.Optional[str] = None, 776 ) -> FetchObservationsResponse: 777 """Get a list of observations in the current project matching the given parameters. 778 779 Args: 780 page (Optional[int]): Page number of the observations to return. Defaults to None. 781 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 782 name (Optional[str]): Name of the observations to return. Defaults to None. 783 user_id (Optional[str]): User identifier. Defaults to None. 784 trace_id (Optional[str]): Trace identifier. Defaults to None. 785 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 786 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 787 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 788 environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None. 789 type (Optional[str]): Type of the observation. Defaults to None. 790 791 Returns: 792 FetchObservationsResponse, list of observations on `data` and metadata on `meta`. 793 794 Raises: 795 Exception: If an error occurred during the request. 796 """ 797 try: 798 self.log.debug( 799 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {environment}, {type}" 800 ) 801 res = self.client.observations.get_many( 802 page=page, 803 limit=limit, 804 name=name, 805 user_id=user_id, 806 trace_id=trace_id, 807 parent_observation_id=parent_observation_id, 808 from_start_time=from_start_time, 809 to_start_time=to_start_time, 810 environment=environment, 811 type=type, 812 ) 813 return FetchObservationsResponse(data=res.data, meta=res.meta) 814 except Exception as e: 815 self.log.exception(e) 816 raise e 817 818 def get_observations( 819 self, 820 *, 821 page: typing.Optional[int] = None, 822 limit: typing.Optional[int] = None, 823 name: typing.Optional[str] = None, 824 user_id: typing.Optional[str] = None, 825 trace_id: typing.Optional[str] = None, 826 parent_observation_id: typing.Optional[str] = None, 827 from_start_time: typing.Optional[dt.datetime] = None, 828 to_start_time: typing.Optional[dt.datetime] = None, 829 type: typing.Optional[str] = None, 830 ) -> ObservationsViews: 831 """Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead. 832 833 Args: 834 page (Optional[int]): Page number of the observations to return. Defaults to None. 835 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 836 name (Optional[str]): Name of the observations to return. Defaults to None. 837 user_id (Optional[str]): User identifier. Defaults to None. 838 trace_id (Optional[str]): Trace identifier. Defaults to None. 839 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 840 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 841 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 842 type (Optional[str]): Type of the observation. Defaults to None. 843 844 Returns: 845 List of ObservationsViews: List of observations in the project matching the given parameters. 846 847 Raises: 848 Exception: If an error occurred during the request. 849 """ 850 warnings.warn( 851 "get_observations is deprecated, use fetch_observations instead.", 852 DeprecationWarning, 853 ) 854 try: 855 self.log.debug( 856 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 857 ) 858 return self.client.observations.get_many( 859 page=page, 860 limit=limit, 861 name=name, 862 user_id=user_id, 863 trace_id=trace_id, 864 parent_observation_id=parent_observation_id, 865 from_start_time=from_start_time, 866 to_start_time=to_start_time, 867 type=type, 868 ) 869 except Exception as e: 870 handle_fern_exception(e) 871 raise e 872 873 def get_generations( 874 self, 875 *, 876 page: typing.Optional[int] = None, 877 limit: typing.Optional[int] = None, 878 name: typing.Optional[str] = None, 879 user_id: typing.Optional[str] = None, 880 trace_id: typing.Optional[str] = None, 881 from_start_time: typing.Optional[dt.datetime] = None, 882 to_start_time: typing.Optional[dt.datetime] = None, 883 parent_observation_id: typing.Optional[str] = None, 884 ) -> ObservationsViews: 885 """Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead. 886 887 Args: 888 page (Optional[int]): Page number of the generations to return. Defaults to None. 889 limit (Optional[int]): Maximum number of generations to return. Defaults to None. 890 name (Optional[str]): Name of the generations to return. Defaults to None. 891 user_id (Optional[str]): User identifier of the generations to return. Defaults to None. 892 trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None. 893 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 894 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 895 parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None. 896 897 Returns: 898 List of ObservationsViews: List of generations in the project matching the given parameters. 899 900 Raises: 901 Exception: If an error occurred during the request. 902 """ 903 warnings.warn( 904 "get_generations is deprecated, use `fetch_observations(type='GENERATION')` instead.", 905 DeprecationWarning, 906 ) 907 return self.get_observations( 908 page=page, 909 limit=limit, 910 name=name, 911 user_id=user_id, 912 trace_id=trace_id, 913 parent_observation_id=parent_observation_id, 914 from_start_time=from_start_time, 915 to_start_time=to_start_time, 916 type="GENERATION", 917 ) 918 919 def fetch_observation( 920 self, 921 id: str, 922 ) -> FetchObservationResponse: 923 """Get an observation in the current project with the given identifier. 924 925 Args: 926 id: The identifier of the observation to fetch. 927 928 Returns: 929 FetchObservationResponse: The observation with the given id on `data`. 930 931 Raises: 932 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 933 """ 934 try: 935 self.log.debug(f"Getting observation {id}") 936 observation = self.client.observations.get(id) 937 return FetchObservationResponse(data=observation) 938 except Exception as e: 939 handle_fern_exception(e) 940 raise e 941 942 def fetch_media(self, id: str) -> FetchMediaResponse: 943 """Get media content by ID. 944 945 Args: 946 id: The identifier of the media content to fetch. 947 948 Returns: 949 FetchMediaResponse: The media data of the given id on `data`. 950 951 Raises: 952 Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request. 953 """ 954 try: 955 return FetchMediaResponse(data=self.client.media.get(id)) 956 except Exception as e: 957 handle_fern_exception(e) 958 raise e 959 960 def resolve_media_references( 961 self, 962 *, 963 obj: Any, 964 resolve_with: Literal["base64_data_uri"], 965 max_depth: int = 10, 966 content_fetch_timeout_seconds: int = 10, 967 ): 968 """Replace media reference strings in an object with base64 data URIs. 969 970 This method recursively traverses an object (up to max_depth) looking for media reference strings 971 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 972 the provided Langfuse client and replaces the reference string with a base64 data URI. 973 974 If fetching media content fails for a reference string, a warning is logged and the reference 975 string is left unchanged. 976 977 Args: 978 obj: The object to process. Can be a primitive value, array, or nested object. 979 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 980 resolve_with: The representation of the media content to replace the media reference string with. 981 Currently only "base64_data_uri" is supported. 982 max_depth: int: The maximum depth to traverse the object. Default is 10. 983 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10. 984 985 Returns: 986 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 987 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 988 989 Example: 990 obj = { 991 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 992 "nested": { 993 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 994 } 995 } 996 997 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 998 999 # Result: 1000 # { 1001 # "image": "...", 1002 # "nested": { 1003 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 1004 # } 1005 # } 1006 """ 1007 return LangfuseMedia.resolve_media_references( 1008 langfuse_client=self, 1009 obj=obj, 1010 resolve_with=resolve_with, 1011 max_depth=max_depth, 1012 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 1013 ) 1014 1015 def get_observation( 1016 self, 1017 id: str, 1018 ) -> Observation: 1019 """Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead. 1020 1021 Args: 1022 id: The identifier of the observation to fetch. 1023 1024 Raises: 1025 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 1026 """ 1027 warnings.warn( 1028 "get_observation is deprecated, use fetch_observation instead.", 1029 DeprecationWarning, 1030 ) 1031 try: 1032 self.log.debug(f"Getting observation {id}") 1033 return self.client.observations.get(id) 1034 except Exception as e: 1035 handle_fern_exception(e) 1036 raise e 1037 1038 def fetch_sessions( 1039 self, 1040 *, 1041 page: typing.Optional[int] = None, 1042 limit: typing.Optional[int] = None, 1043 from_timestamp: typing.Optional[dt.datetime] = None, 1044 to_timestamp: typing.Optional[dt.datetime] = None, 1045 ) -> FetchSessionsResponse: 1046 """Get a list of sessions in the current project. 1047 1048 Args: 1049 page (Optional[int]): Page number of the sessions to return. Defaults to None. 1050 limit (Optional[int]): Maximum number of sessions to return. Defaults to None. 1051 from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None. 1052 to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None. 1053 1054 Returns: 1055 FetchSessionsResponse, list of sessions on `data` and metadata on `meta`. 1056 1057 Raises: 1058 Exception: If an error occurred during the request. 1059 """ 1060 try: 1061 self.log.debug( 1062 f"Getting sessions... {page}, {limit}, {from_timestamp}, {to_timestamp}" 1063 ) 1064 res = self.client.sessions.list( 1065 page=page, 1066 limit=limit, 1067 from_timestamp=from_timestamp, 1068 to_timestamp=to_timestamp, 1069 ) 1070 return FetchSessionsResponse(data=res.data, meta=res.meta) 1071 except Exception as e: 1072 handle_fern_exception(e) 1073 raise e 1074 1075 @overload 1076 def get_prompt( 1077 self, 1078 name: str, 1079 version: Optional[int] = None, 1080 *, 1081 label: Optional[str] = None, 1082 type: Literal["chat"], 1083 cache_ttl_seconds: Optional[int] = None, 1084 fallback: Optional[List[ChatMessageDict]] = None, 1085 max_retries: Optional[int] = None, 1086 fetch_timeout_seconds: Optional[int] = None, 1087 ) -> ChatPromptClient: ... 1088 1089 @overload 1090 def get_prompt( 1091 self, 1092 name: str, 1093 version: Optional[int] = None, 1094 *, 1095 label: Optional[str] = None, 1096 type: Literal["text"] = "text", 1097 cache_ttl_seconds: Optional[int] = None, 1098 fallback: Optional[str] = None, 1099 max_retries: Optional[int] = None, 1100 fetch_timeout_seconds: Optional[int] = None, 1101 ) -> TextPromptClient: ... 1102 1103 def get_prompt( 1104 self, 1105 name: str, 1106 version: Optional[int] = None, 1107 *, 1108 label: Optional[str] = None, 1109 type: Literal["chat", "text"] = "text", 1110 cache_ttl_seconds: Optional[int] = None, 1111 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 1112 max_retries: Optional[int] = None, 1113 fetch_timeout_seconds: Optional[int] = None, 1114 ) -> PromptClient: 1115 """Get a prompt. 1116 1117 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 1118 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 1119 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 1120 return the expired prompt as a fallback. 1121 1122 Args: 1123 name (str): The name of the prompt to retrieve. 1124 1125 Keyword Args: 1126 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1127 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1128 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 1129 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 1130 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 1131 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 1132 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 1133 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default. 1134 1135 Returns: 1136 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 1137 - TextPromptClient, if type argument is 'text'. 1138 - ChatPromptClient, if type argument is 'chat'. 1139 1140 Raises: 1141 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 1142 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 1143 """ 1144 if version is not None and label is not None: 1145 raise ValueError("Cannot specify both version and label at the same time.") 1146 1147 if not name: 1148 raise ValueError("Prompt name cannot be empty.") 1149 1150 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 1151 bounded_max_retries = self._get_bounded_max_retries( 1152 max_retries, default_max_retries=2, max_retries_upper_bound=4 1153 ) 1154 1155 self.log.debug(f"Getting prompt '{cache_key}'") 1156 cached_prompt = self.prompt_cache.get(cache_key) 1157 1158 if cached_prompt is None or cache_ttl_seconds == 0: 1159 self.log.debug( 1160 f"Prompt '{cache_key}' not found in cache or caching disabled." 1161 ) 1162 try: 1163 return self._fetch_prompt_and_update_cache( 1164 name, 1165 version=version, 1166 label=label, 1167 ttl_seconds=cache_ttl_seconds, 1168 max_retries=bounded_max_retries, 1169 fetch_timeout_seconds=fetch_timeout_seconds, 1170 ) 1171 except Exception as e: 1172 if fallback: 1173 self.log.warning( 1174 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 1175 ) 1176 1177 fallback_client_args = { 1178 "name": name, 1179 "prompt": fallback, 1180 "type": type, 1181 "version": version or 0, 1182 "config": {}, 1183 "labels": [label] if label else [], 1184 "tags": [], 1185 } 1186 1187 if type == "text": 1188 return TextPromptClient( 1189 prompt=Prompt_Text(**fallback_client_args), 1190 is_fallback=True, 1191 ) 1192 1193 if type == "chat": 1194 return ChatPromptClient( 1195 prompt=Prompt_Chat(**fallback_client_args), 1196 is_fallback=True, 1197 ) 1198 1199 raise e 1200 1201 if cached_prompt.is_expired(): 1202 self.log.debug(f"Stale prompt '{cache_key}' found in cache.") 1203 try: 1204 # refresh prompt in background thread, refresh_prompt deduplicates tasks 1205 self.log.debug(f"Refreshing prompt '{cache_key}' in background.") 1206 self.prompt_cache.add_refresh_prompt_task( 1207 cache_key, 1208 lambda: self._fetch_prompt_and_update_cache( 1209 name, 1210 version=version, 1211 label=label, 1212 ttl_seconds=cache_ttl_seconds, 1213 max_retries=bounded_max_retries, 1214 fetch_timeout_seconds=fetch_timeout_seconds, 1215 ), 1216 ) 1217 self.log.debug(f"Returning stale prompt '{cache_key}' from cache.") 1218 # return stale prompt 1219 return cached_prompt.value 1220 1221 except Exception as e: 1222 self.log.warning( 1223 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 1224 ) 1225 # creation of refresh prompt task failed, return stale prompt 1226 return cached_prompt.value 1227 1228 return cached_prompt.value 1229 1230 def _fetch_prompt_and_update_cache( 1231 self, 1232 name: str, 1233 *, 1234 version: Optional[int] = None, 1235 label: Optional[str] = None, 1236 ttl_seconds: Optional[int] = None, 1237 max_retries: int, 1238 fetch_timeout_seconds, 1239 ) -> PromptClient: 1240 try: 1241 cache_key = PromptCache.generate_cache_key( 1242 name, version=version, label=label 1243 ) 1244 1245 self.log.debug(f"Fetching prompt '{cache_key}' from server...") 1246 1247 @backoff.on_exception( 1248 backoff.constant, Exception, max_tries=max_retries, logger=None 1249 ) 1250 def fetch_prompts(): 1251 return self.client.prompts.get( 1252 self._url_encode(name), 1253 version=version, 1254 label=label, 1255 request_options={ 1256 "timeout_in_seconds": fetch_timeout_seconds, 1257 } 1258 if fetch_timeout_seconds is not None 1259 else None, 1260 ) 1261 1262 prompt_response = fetch_prompts() 1263 1264 if prompt_response.type == "chat": 1265 prompt = ChatPromptClient(prompt_response) 1266 else: 1267 prompt = TextPromptClient(prompt_response) 1268 1269 self.prompt_cache.set(cache_key, prompt, ttl_seconds) 1270 1271 return prompt 1272 1273 except Exception as e: 1274 self.log.error(f"Error while fetching prompt '{cache_key}': {str(e)}") 1275 raise e 1276 1277 def _get_bounded_max_retries( 1278 self, 1279 max_retries: Optional[int], 1280 *, 1281 default_max_retries: int = 2, 1282 max_retries_upper_bound: int = 4, 1283 ) -> int: 1284 if max_retries is None: 1285 return default_max_retries 1286 1287 bounded_max_retries = min( 1288 max(max_retries, 0), 1289 max_retries_upper_bound, 1290 ) 1291 1292 return bounded_max_retries 1293 1294 @overload 1295 def create_prompt( 1296 self, 1297 *, 1298 name: str, 1299 prompt: List[ChatMessageDict], 1300 is_active: Optional[bool] = None, # deprecated 1301 labels: List[str] = [], 1302 tags: Optional[List[str]] = None, 1303 type: Optional[Literal["chat"]], 1304 config: Optional[Any] = None, 1305 commit_message: Optional[str] = None, 1306 ) -> ChatPromptClient: ... 1307 1308 @overload 1309 def create_prompt( 1310 self, 1311 *, 1312 name: str, 1313 prompt: str, 1314 is_active: Optional[bool] = None, # deprecated 1315 labels: List[str] = [], 1316 tags: Optional[List[str]] = None, 1317 type: Optional[Literal["text"]] = "text", 1318 config: Optional[Any] = None, 1319 commit_message: Optional[str] = None, 1320 ) -> TextPromptClient: ... 1321 1322 def create_prompt( 1323 self, 1324 *, 1325 name: str, 1326 prompt: Union[str, List[ChatMessageDict]], 1327 is_active: Optional[bool] = None, # deprecated 1328 labels: List[str] = [], 1329 tags: Optional[List[str]] = None, 1330 type: Optional[Literal["chat", "text"]] = "text", 1331 config: Optional[Any] = None, 1332 commit_message: Optional[str] = None, 1333 ) -> PromptClient: 1334 """Create a new prompt in Langfuse. 1335 1336 Keyword Args: 1337 name : The name of the prompt to be created. 1338 prompt : The content of the prompt to be created. 1339 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 1340 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 1341 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 1342 config: Additional structured data to be saved with the prompt. Defaults to None. 1343 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 1344 commit_message: Optional string describing the change. 1345 1346 Returns: 1347 TextPromptClient: The prompt if type argument is 'text'. 1348 ChatPromptClient: The prompt if type argument is 'chat'. 1349 """ 1350 try: 1351 self.log.debug(f"Creating prompt {name=}, {version=}, {labels=}") 1352 1353 # Handle deprecated is_active flag 1354 if is_active: 1355 self.log.warning( 1356 "The 'is_active' flag is deprecated and will be removed in a future release. Please use the 'production' label instead." 1357 ) 1358 1359 labels = labels if "production" in labels else labels + ["production"] 1360 1361 if type == "chat": 1362 if not isinstance(prompt, list): 1363 raise ValueError( 1364 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 1365 ) 1366 request = CreatePromptRequest_Chat( 1367 name=name, 1368 prompt=prompt, 1369 labels=labels, 1370 tags=tags, 1371 config=config or {}, 1372 commitMessage=commit_message, 1373 type="chat", 1374 ) 1375 server_prompt = self.client.prompts.create(request=request) 1376 1377 return ChatPromptClient(prompt=server_prompt) 1378 1379 if not isinstance(prompt, str): 1380 raise ValueError("For 'text' type, 'prompt' must be a string.") 1381 1382 request = CreatePromptRequest_Text( 1383 name=name, 1384 prompt=prompt, 1385 labels=labels, 1386 tags=tags, 1387 config=config or {}, 1388 commitMessage=commit_message, 1389 type="text", 1390 ) 1391 1392 server_prompt = self.client.prompts.create(request=request) 1393 return TextPromptClient(prompt=server_prompt) 1394 1395 except Exception as e: 1396 handle_fern_exception(e) 1397 raise e 1398 1399 def update_prompt( 1400 self, 1401 *, 1402 name: str, 1403 version: int, 1404 new_labels: List[str] = [], 1405 ): 1406 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 1407 1408 Args: 1409 name (str): The name of the prompt to update. 1410 version (int): The version number of the prompt to update. 1411 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 1412 1413 Returns: 1414 Prompt: The updated prompt from the Langfuse API. 1415 1416 """ 1417 updated_prompt = self.client.prompt_version.update( 1418 name=name, 1419 version=version, 1420 new_labels=new_labels, 1421 ) 1422 self.prompt_cache.invalidate(name) 1423 return updated_prompt 1424 1425 def _url_encode(self, url: str) -> str: 1426 return urllib.parse.quote(url) 1427 1428 def trace( 1429 self, 1430 *, 1431 id: typing.Optional[str] = None, 1432 name: typing.Optional[str] = None, 1433 user_id: typing.Optional[str] = None, 1434 session_id: typing.Optional[str] = None, 1435 version: typing.Optional[str] = None, 1436 input: typing.Optional[typing.Any] = None, 1437 output: typing.Optional[typing.Any] = None, 1438 metadata: typing.Optional[typing.Any] = None, 1439 tags: typing.Optional[typing.List[str]] = None, 1440 timestamp: typing.Optional[dt.datetime] = None, 1441 public: typing.Optional[bool] = None, 1442 **kwargs, 1443 ) -> "StatefulTraceClient": 1444 """Create a trace. 1445 1446 Args: 1447 id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id. 1448 name: Identifier of the trace. Useful for sorting/filtering in the UI. 1449 input: The input of the trace. Can be any JSON object. 1450 output: The output of the trace. Can be any JSON object. 1451 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 1452 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 1453 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 1454 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 1455 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 1456 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 1457 timestamp: The timestamp of the trace. Defaults to the current time if not provided. 1458 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 1459 **kwargs: Additional keyword arguments that can be included in the trace. 1460 1461 Returns: 1462 StatefulTraceClient: The created trace. 1463 1464 Example: 1465 ```python 1466 from langfuse import Langfuse 1467 1468 langfuse = Langfuse() 1469 1470 trace = langfuse.trace( 1471 name="example-application", 1472 user_id="user-1234") 1473 ) 1474 ``` 1475 """ 1476 new_id = id or str(uuid.uuid4()) 1477 self.trace_id = new_id 1478 try: 1479 new_dict = { 1480 "id": new_id, 1481 "name": name, 1482 "userId": user_id, 1483 "sessionId": session_id 1484 or kwargs.get("sessionId", None), # backward compatibility 1485 "release": self.release, 1486 "version": version, 1487 "metadata": metadata, 1488 "input": input, 1489 "output": output, 1490 "tags": tags, 1491 "timestamp": timestamp or _get_timestamp(), 1492 "public": public, 1493 "environment": self.environment, 1494 } 1495 if kwargs is not None: 1496 new_dict.update(kwargs) 1497 1498 new_body = TraceBody(**new_dict) 1499 1500 self.log.debug(f"Creating trace {_filter_io_from_event_body(new_dict)}") 1501 event = { 1502 "id": str(uuid.uuid4()), 1503 "type": "trace-create", 1504 "body": new_body, 1505 } 1506 1507 self.task_manager.add_task( 1508 event, 1509 ) 1510 1511 except Exception as e: 1512 self.log.exception(e) 1513 finally: 1514 self._log_memory_usage() 1515 1516 return StatefulTraceClient( 1517 self.client, 1518 new_id, 1519 StateType.TRACE, 1520 new_id, 1521 self.task_manager, 1522 self.environment, 1523 ) 1524 1525 def _log_memory_usage(self): 1526 try: 1527 is_malloc_tracing_enabled = bool(int(os.getenv("PYTHONTRACEMALLOC", 0))) 1528 report_interval = int(os.getenv("LANGFUSE_DEBUG_MEMORY_REPORT_INTERVAL", 0)) 1529 top_k_items = int(os.getenv("LANGFUSE_DEBUG_MEMORY_TOP_K", 10)) 1530 1531 if ( 1532 not is_malloc_tracing_enabled 1533 or report_interval <= 0 1534 or round(time.monotonic()) % report_interval != 0 1535 ): 1536 return 1537 1538 snapshot = tracemalloc.take_snapshot().statistics("lineno") 1539 1540 total_memory_usage = sum([stat.size for stat in snapshot]) / 1024 / 1024 1541 memory_usage_total_items = [f"{stat}" for stat in snapshot] 1542 memory_usage_langfuse_items = [ 1543 stat for stat in memory_usage_total_items if "/langfuse/" in stat 1544 ] 1545 1546 logged_memory_usage = { 1547 "all_files": [f"{stat}" for stat in memory_usage_total_items][ 1548 :top_k_items 1549 ], 1550 "langfuse_files": [f"{stat}" for stat in memory_usage_langfuse_items][ 1551 :top_k_items 1552 ], 1553 "total_usage": f"{total_memory_usage:.2f} MB", 1554 "langfuse_queue_length": self.task_manager._ingestion_queue.qsize(), 1555 } 1556 1557 self.log.debug("Memory usage: ", logged_memory_usage) 1558 1559 event = SdkLogBody(log=logged_memory_usage) 1560 self.task_manager.add_task( 1561 { 1562 "id": str(uuid.uuid4()), 1563 "type": "sdk-log", 1564 "timestamp": _get_timestamp(), 1565 "body": event.dict(), 1566 } 1567 ) 1568 1569 except Exception as e: 1570 self.log.exception(e) 1571 1572 @overload 1573 def score( 1574 self, 1575 *, 1576 name: str, 1577 value: float, 1578 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 1579 trace_id: typing.Optional[str] = None, 1580 id: typing.Optional[str] = None, 1581 comment: typing.Optional[str] = None, 1582 observation_id: typing.Optional[str] = None, 1583 config_id: typing.Optional[str] = None, 1584 **kwargs, 1585 ) -> "StatefulClient": ... 1586 1587 @overload 1588 def score( 1589 self, 1590 *, 1591 name: str, 1592 value: str, 1593 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 1594 trace_id: typing.Optional[str] = None, 1595 id: typing.Optional[str] = None, 1596 comment: typing.Optional[str] = None, 1597 observation_id: typing.Optional[str] = None, 1598 config_id: typing.Optional[str] = None, 1599 **kwargs, 1600 ) -> "StatefulClient": ... 1601 1602 def score( 1603 self, 1604 *, 1605 name: str, 1606 value: typing.Union[float, str], 1607 data_type: typing.Optional[ScoreDataType] = None, 1608 trace_id: typing.Optional[str] = None, 1609 id: typing.Optional[str] = None, 1610 comment: typing.Optional[str] = None, 1611 observation_id: typing.Optional[str] = None, 1612 config_id: typing.Optional[str] = None, 1613 **kwargs, 1614 ) -> "StatefulClient": 1615 """Create a score attached to a trace (and optionally an observation). 1616 1617 Args: 1618 name (str): Identifier of the score. 1619 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 1620 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 1621 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 1622 trace_id (str): The id of the trace to which the score should be attached. 1623 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 1624 comment (Optional[str]): Additional context/explanation of the score. 1625 observation_id (Optional[str]): The id of the observation to which the score should be attached. 1626 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 1627 **kwargs: Additional keyword arguments to include in the score. 1628 1629 Returns: 1630 StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided). 1631 1632 Example: 1633 ```python 1634 from langfuse import Langfuse 1635 1636 langfuse = Langfuse() 1637 1638 # Create a trace 1639 trace = langfuse.trace(name="example-application") 1640 1641 # Get id of created trace 1642 trace_id = trace.id 1643 1644 # Add score to the trace 1645 trace = langfuse.score( 1646 trace_id=trace_id, 1647 name="user-explicit-feedback", 1648 value=0.9, 1649 comment="I like how personalized the response is" 1650 ) 1651 ``` 1652 """ 1653 trace_id = trace_id or self.trace_id or str(uuid.uuid4()) 1654 new_id = id or str(uuid.uuid4()) 1655 try: 1656 new_dict = { 1657 "id": new_id, 1658 "trace_id": trace_id, 1659 "observation_id": observation_id, 1660 "name": name, 1661 "value": value, 1662 "data_type": data_type, 1663 "comment": comment, 1664 "config_id": config_id, 1665 "environment": self.environment, 1666 **kwargs, 1667 } 1668 1669 self.log.debug(f"Creating score {new_dict}...") 1670 new_body = ScoreBody(**new_dict) 1671 1672 event = { 1673 "id": str(uuid.uuid4()), 1674 "type": "score-create", 1675 "body": new_body, 1676 } 1677 self.task_manager.add_task(event) 1678 1679 except Exception as e: 1680 self.log.exception(e) 1681 finally: 1682 if observation_id is not None: 1683 return StatefulClient( 1684 self.client, 1685 observation_id, 1686 StateType.OBSERVATION, 1687 trace_id, 1688 self.task_manager, 1689 self.environment, 1690 ) 1691 else: 1692 return StatefulClient( 1693 self.client, 1694 new_id, 1695 StateType.TRACE, 1696 new_id, 1697 self.task_manager, 1698 self.environment, 1699 ) 1700 1701 def span( 1702 self, 1703 *, 1704 id: typing.Optional[str] = None, 1705 trace_id: typing.Optional[str] = None, 1706 parent_observation_id: typing.Optional[str] = None, 1707 name: typing.Optional[str] = None, 1708 start_time: typing.Optional[dt.datetime] = None, 1709 end_time: typing.Optional[dt.datetime] = None, 1710 metadata: typing.Optional[typing.Any] = None, 1711 level: typing.Optional[SpanLevel] = None, 1712 status_message: typing.Optional[str] = None, 1713 input: typing.Optional[typing.Any] = None, 1714 output: typing.Optional[typing.Any] = None, 1715 version: typing.Optional[str] = None, 1716 **kwargs, 1717 ) -> "StatefulSpanClient": 1718 """Create a span. 1719 1720 A span represents durations of units of work in a trace. 1721 Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1722 1723 If no trace_id is provided, a new trace is created just for this span. 1724 1725 Args: 1726 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 1727 trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated. 1728 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1729 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 1730 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 1731 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 1732 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 1733 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1734 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 1735 input (Optional[dict]): The input to the span. Can be any JSON object. 1736 output (Optional[dict]): The output to the span. Can be any JSON object. 1737 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1738 **kwargs: Additional keyword arguments to include in the span. 1739 1740 Returns: 1741 StatefulSpanClient: The created span. 1742 1743 Example: 1744 ```python 1745 from langfuse import Langfuse 1746 1747 langfuse = Langfuse() 1748 1749 trace = langfuse.trace(name = "llm-feature") 1750 1751 # Create a span 1752 retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) 1753 1754 # Create a nested span 1755 nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id) 1756 ``` 1757 """ 1758 new_span_id = id or str(uuid.uuid4()) 1759 new_trace_id = trace_id or str(uuid.uuid4()) 1760 self.trace_id = new_trace_id 1761 try: 1762 span_body = { 1763 "id": new_span_id, 1764 "trace_id": new_trace_id, 1765 "name": name, 1766 "start_time": start_time or _get_timestamp(), 1767 "metadata": metadata, 1768 "input": input, 1769 "output": output, 1770 "level": level, 1771 "status_message": status_message, 1772 "parent_observation_id": parent_observation_id, 1773 "version": version, 1774 "end_time": end_time, 1775 "trace": {"release": self.release}, 1776 "environment": self.environment, 1777 **kwargs, 1778 } 1779 1780 if trace_id is None: 1781 self._generate_trace(new_trace_id, name or new_trace_id) 1782 1783 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 1784 1785 span_body = CreateSpanBody(**span_body) 1786 1787 event = { 1788 "id": str(uuid.uuid4()), 1789 "type": "span-create", 1790 "body": span_body, 1791 } 1792 1793 self.task_manager.add_task(event) 1794 1795 except Exception as e: 1796 self.log.exception(e) 1797 finally: 1798 self._log_memory_usage() 1799 1800 return StatefulSpanClient( 1801 self.client, 1802 new_span_id, 1803 StateType.OBSERVATION, 1804 new_trace_id, 1805 self.task_manager, 1806 self.environment, 1807 ) 1808 1809 def event( 1810 self, 1811 *, 1812 id: typing.Optional[str] = None, 1813 trace_id: typing.Optional[str] = None, 1814 parent_observation_id: typing.Optional[str] = None, 1815 name: typing.Optional[str] = None, 1816 start_time: typing.Optional[dt.datetime] = None, 1817 metadata: typing.Optional[typing.Any] = None, 1818 input: typing.Optional[typing.Any] = None, 1819 output: typing.Optional[typing.Any] = None, 1820 level: typing.Optional[SpanLevel] = None, 1821 status_message: typing.Optional[str] = None, 1822 version: typing.Optional[str] = None, 1823 **kwargs, 1824 ) -> "StatefulSpanClient": 1825 """Create an event. 1826 1827 An event represents a discrete event in a trace. 1828 Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1829 1830 If no trace_id is provided, a new trace is created just for this event. 1831 1832 Args: 1833 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 1834 trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event. 1835 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1836 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 1837 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 1838 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 1839 input (Optional[Any]): The input to the event. Can be any JSON object. 1840 output (Optional[Any]): The output to the event. Can be any JSON object. 1841 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1842 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 1843 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 1844 **kwargs: Additional keyword arguments to include in the event. 1845 1846 Returns: 1847 StatefulSpanClient: The created event. 1848 1849 Example: 1850 ```python 1851 from langfuse import Langfuse 1852 1853 langfuse = Langfuse() 1854 1855 trace = langfuse.trace(name = "llm-feature") 1856 1857 # Create an event 1858 retrieval = langfuse.event(name = "retrieval", trace_id = trace.id) 1859 ``` 1860 """ 1861 event_id = id or str(uuid.uuid4()) 1862 new_trace_id = trace_id or str(uuid.uuid4()) 1863 self.trace_id = new_trace_id 1864 try: 1865 event_body = { 1866 "id": event_id, 1867 "trace_id": new_trace_id, 1868 "name": name, 1869 "start_time": start_time or _get_timestamp(), 1870 "metadata": metadata, 1871 "input": input, 1872 "output": output, 1873 "level": level, 1874 "status_message": status_message, 1875 "parent_observation_id": parent_observation_id, 1876 "version": version, 1877 "trace": {"release": self.release}, 1878 "environment": self.environment, 1879 **kwargs, 1880 } 1881 1882 if trace_id is None: 1883 self._generate_trace(new_trace_id, name or new_trace_id) 1884 1885 request = CreateEventBody(**event_body) 1886 1887 event = { 1888 "id": str(uuid.uuid4()), 1889 "type": "event-create", 1890 "body": request, 1891 } 1892 1893 self.log.debug( 1894 f"Creating event {_filter_io_from_event_body(event_body)} ..." 1895 ) 1896 self.task_manager.add_task(event) 1897 1898 except Exception as e: 1899 self.log.exception(e) 1900 finally: 1901 return StatefulSpanClient( 1902 self.client, 1903 event_id, 1904 StateType.OBSERVATION, 1905 new_trace_id, 1906 self.task_manager, 1907 self.environment, 1908 ) 1909 1910 def generation( 1911 self, 1912 *, 1913 id: typing.Optional[str] = None, 1914 trace_id: typing.Optional[str] = None, 1915 parent_observation_id: typing.Optional[str] = None, 1916 name: typing.Optional[str] = None, 1917 start_time: typing.Optional[dt.datetime] = None, 1918 end_time: typing.Optional[dt.datetime] = None, 1919 completion_start_time: typing.Optional[dt.datetime] = None, 1920 metadata: typing.Optional[typing.Any] = None, 1921 level: typing.Optional[SpanLevel] = None, 1922 status_message: typing.Optional[str] = None, 1923 version: typing.Optional[str] = None, 1924 model: typing.Optional[str] = None, 1925 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 1926 input: typing.Optional[typing.Any] = None, 1927 output: typing.Optional[typing.Any] = None, 1928 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 1929 usage_details: typing.Optional[typing.Dict[str, int]] = None, 1930 cost_details: typing.Optional[typing.Dict[str, float]] = None, 1931 prompt: typing.Optional[PromptClient] = None, 1932 **kwargs, 1933 ) -> "StatefulGenerationClient": 1934 """Create a generation. 1935 1936 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 1937 1938 Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1939 1940 If no trace_id is provided, a new trace is created just for this generation. 1941 1942 Args: 1943 id (Optional[str]): The id of the generation can be set, defaults to random id. 1944 trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created 1945 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1946 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 1947 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 1948 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 1949 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 1950 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 1951 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1952 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 1953 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1954 model (Optional[str]): The name of the model used for the generation. 1955 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 1956 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 1957 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 1958 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 1959 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 1960 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 1961 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 1962 **kwargs: Additional keyword arguments to include in the generation. 1963 1964 Returns: 1965 StatefulGenerationClient: The created generation. 1966 1967 Example: 1968 ```python 1969 from langfuse import Langfuse 1970 1971 langfuse = Langfuse() 1972 1973 # Create a generation in Langfuse 1974 generation = langfuse.generation( 1975 name="summary-generation", 1976 model="gpt-3.5-turbo", 1977 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 1978 input=[{"role": "system", "content": "You are a helpful assistant."}, 1979 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 1980 metadata={"interface": "whatsapp"} 1981 ) 1982 ``` 1983 """ 1984 new_trace_id = trace_id or str(uuid.uuid4()) 1985 new_generation_id = id or str(uuid.uuid4()) 1986 self.trace_id = new_trace_id 1987 try: 1988 generation_body = { 1989 "id": new_generation_id, 1990 "trace_id": new_trace_id, 1991 "release": self.release, 1992 "name": name, 1993 "start_time": start_time or _get_timestamp(), 1994 "metadata": metadata, 1995 "input": input, 1996 "output": output, 1997 "level": level, 1998 "status_message": status_message, 1999 "parent_observation_id": parent_observation_id, 2000 "version": version, 2001 "end_time": end_time, 2002 "completion_start_time": completion_start_time, 2003 "model": model, 2004 "model_parameters": model_parameters, 2005 "usage": _convert_usage_input(usage) if usage is not None else None, 2006 "usage_details": usage_details, 2007 "cost_details": cost_details, 2008 "trace": {"release": self.release}, 2009 "environment": self.environment, 2010 **_create_prompt_context(prompt), 2011 **kwargs, 2012 } 2013 2014 if trace_id is None: 2015 trace = { 2016 "id": new_trace_id, 2017 "release": self.release, 2018 "name": name, 2019 "environment": self.environment, 2020 } 2021 request = TraceBody(**trace) 2022 2023 event = { 2024 "id": str(uuid.uuid4()), 2025 "type": "trace-create", 2026 "body": request, 2027 } 2028 2029 self.log.debug("Creating trace...") 2030 2031 self.task_manager.add_task(event) 2032 2033 self.log.debug( 2034 f"Creating generation max {_filter_io_from_event_body(generation_body)}..." 2035 ) 2036 request = CreateGenerationBody(**generation_body) 2037 2038 event = { 2039 "id": str(uuid.uuid4()), 2040 "type": "generation-create", 2041 "body": request, 2042 } 2043 2044 self.task_manager.add_task(event) 2045 2046 except Exception as e: 2047 self.log.exception(e) 2048 finally: 2049 return StatefulGenerationClient( 2050 self.client, 2051 new_generation_id, 2052 StateType.OBSERVATION, 2053 new_trace_id, 2054 self.task_manager, 2055 self.environment, 2056 ) 2057 2058 def _generate_trace(self, trace_id: str, name: str): 2059 trace_dict = { 2060 "id": trace_id, 2061 "release": self.release, 2062 "name": name, 2063 "environment": self.environment, 2064 } 2065 2066 trace_body = TraceBody(**trace_dict) 2067 2068 event = { 2069 "id": str(uuid.uuid4()), 2070 "type": "trace-create", 2071 "body": trace_body, 2072 } 2073 2074 self.log.debug(f"Creating trace {_filter_io_from_event_body(trace_dict)}...") 2075 self.task_manager.add_task(event) 2076 2077 def join(self): 2078 """Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter. 2079 2080 If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. 2081 To guarantee all messages have been delivered, you still need to call flush(). 2082 """ 2083 try: 2084 return self.task_manager.join() 2085 except Exception as e: 2086 self.log.exception(e) 2087 2088 def flush(self): 2089 """Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down. 2090 2091 Example: 2092 ```python 2093 from langfuse import Langfuse 2094 2095 langfuse = Langfuse() 2096 2097 # Some operations with Langfuse 2098 2099 # Flushing all events to end Langfuse cleanly 2100 langfuse.flush() 2101 ``` 2102 """ 2103 try: 2104 return self.task_manager.flush() 2105 except Exception as e: 2106 self.log.exception(e) 2107 2108 def shutdown(self): 2109 """Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated. 2110 2111 This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. 2112 As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API. 2113 """ 2114 try: 2115 self.prompt_cache._task_manager.shutdown() 2116 2117 # In logging.py, a handler is attached to the httpx logger. 2118 # To avoid a memory leak on singleton reset, remove all handlers 2119 httpx_logger = logging.getLogger("httpx") 2120 for handler in httpx_logger.handlers: 2121 httpx_logger.removeHandler(handler) 2122 2123 return self.task_manager.shutdown() 2124 except Exception as e: 2125 self.log.exception(e) 2126 2127 2128class StateType(Enum): 2129 """Enum to distinguish observation and trace states. 2130 2131 Attributes: 2132 OBSERVATION (int): Observation state. 2133 TRACE (int): Trace state. 2134 """ 2135 2136 OBSERVATION = 1 2137 TRACE = 0 2138 2139 2140class StatefulClient(object): 2141 """Base class for handling stateful operations in the Langfuse system. 2142 2143 This client is capable of creating different nested Langfuse objects like spans, generations, scores, and events, 2144 associating them with either an observation or a trace based on the specified state type. 2145 2146 Attributes: 2147 client (FernLangfuse): Core interface for Langfuse API interactions. 2148 id (str): Unique identifier of the stateful client (either observation or trace). 2149 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2150 trace_id (str): Id of the trace associated with the stateful client. 2151 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2152 environment (Optional(str)): The tracing environment. 2153 """ 2154 2155 log = logging.getLogger("langfuse") 2156 2157 def __init__( 2158 self, 2159 client: FernLangfuse, 2160 id: str, 2161 state_type: StateType, 2162 trace_id: str, 2163 task_manager: TaskManager, 2164 environment: Optional[str] = None, 2165 ): 2166 """Initialize the StatefulClient. 2167 2168 Args: 2169 client (FernLangfuse): Core interface for Langfuse API interactions. 2170 id (str): Unique identifier of the stateful client (either observation or trace). 2171 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2172 trace_id (str): Id of the trace associated with the stateful client. 2173 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2174 """ 2175 self.client = client 2176 self.trace_id = trace_id 2177 self.id = id 2178 self.state_type = state_type 2179 self.task_manager = task_manager 2180 2181 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 2182 2183 if self.environment and not bool( 2184 re.match(ENVIRONMENT_PATTERN, self.environment) 2185 ): 2186 self.log.warning( 2187 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Setting will be ignored.' 2188 ) 2189 2190 def _add_state_to_event(self, body: dict): 2191 if self.state_type == StateType.OBSERVATION: 2192 body["parent_observation_id"] = self.id 2193 body["trace_id"] = self.trace_id 2194 else: 2195 body["trace_id"] = self.id 2196 return body 2197 2198 def _add_default_values(self, body: dict): 2199 if body.get("start_time") is None: 2200 body["start_time"] = _get_timestamp() 2201 return body 2202 2203 def generation( 2204 self, 2205 *, 2206 id: typing.Optional[str] = None, 2207 name: typing.Optional[str] = None, 2208 start_time: typing.Optional[dt.datetime] = None, 2209 end_time: typing.Optional[dt.datetime] = None, 2210 metadata: typing.Optional[typing.Any] = None, 2211 level: typing.Optional[SpanLevel] = None, 2212 status_message: typing.Optional[str] = None, 2213 version: typing.Optional[str] = None, 2214 completion_start_time: typing.Optional[dt.datetime] = None, 2215 model: typing.Optional[str] = None, 2216 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2217 input: typing.Optional[typing.Any] = None, 2218 output: typing.Optional[typing.Any] = None, 2219 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2220 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2221 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2222 prompt: typing.Optional[PromptClient] = None, 2223 **kwargs, 2224 ) -> "StatefulGenerationClient": 2225 """Create a generation nested within the current observation or trace. 2226 2227 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 2228 2229 Args: 2230 id (Optional[str]): The id of the generation can be set, defaults to random id. 2231 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2232 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2233 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2234 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2235 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2236 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2237 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2238 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2239 model (Optional[str]): The name of the model used for the generation. 2240 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2241 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2242 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2243 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2244 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2245 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2246 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2247 **kwargs: Additional keyword arguments to include in the generation. 2248 2249 Returns: 2250 StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations. 2251 2252 Example: 2253 ```python 2254 from langfuse import Langfuse 2255 2256 langfuse = Langfuse() 2257 2258 # Create a trace 2259 trace = langfuse.trace(name = "llm-feature") 2260 2261 # Create a nested generation in Langfuse 2262 generation = trace.generation( 2263 name="summary-generation", 2264 model="gpt-3.5-turbo", 2265 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 2266 input=[{"role": "system", "content": "You are a helpful assistant."}, 2267 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 2268 metadata={"interface": "whatsapp"} 2269 ) 2270 ``` 2271 """ 2272 generation_id = id or str(uuid.uuid4()) 2273 try: 2274 generation_body = { 2275 "id": generation_id, 2276 "name": name, 2277 "start_time": start_time or _get_timestamp(), 2278 "metadata": metadata, 2279 "level": level, 2280 "status_message": status_message, 2281 "version": version, 2282 "end_time": end_time, 2283 "completion_start_time": completion_start_time, 2284 "model": model, 2285 "model_parameters": model_parameters, 2286 "input": input, 2287 "output": output, 2288 "usage": _convert_usage_input(usage) if usage is not None else None, 2289 "usage_details": usage_details, 2290 "cost_details": cost_details, 2291 "environment": self.environment, 2292 **_create_prompt_context(prompt), 2293 **kwargs, 2294 } 2295 2296 generation_body = self._add_state_to_event(generation_body) 2297 new_body = self._add_default_values(generation_body) 2298 2299 new_body = CreateGenerationBody(**new_body) 2300 2301 event = { 2302 "id": str(uuid.uuid4()), 2303 "type": "generation-create", 2304 "body": new_body.dict(exclude_none=True, exclude_unset=False), 2305 } 2306 2307 self.log.debug( 2308 f"Creating generation {_filter_io_from_event_body(generation_body)}..." 2309 ) 2310 self.task_manager.add_task(event) 2311 2312 except Exception as e: 2313 self.log.exception(e) 2314 finally: 2315 return StatefulGenerationClient( 2316 self.client, 2317 generation_id, 2318 StateType.OBSERVATION, 2319 self.trace_id, 2320 self.task_manager, 2321 self.environment, 2322 ) 2323 2324 def span( 2325 self, 2326 *, 2327 id: typing.Optional[str] = None, 2328 name: typing.Optional[str] = None, 2329 start_time: typing.Optional[dt.datetime] = None, 2330 end_time: typing.Optional[dt.datetime] = None, 2331 metadata: typing.Optional[typing.Any] = None, 2332 input: typing.Optional[typing.Any] = None, 2333 output: typing.Optional[typing.Any] = None, 2334 level: typing.Optional[SpanLevel] = None, 2335 status_message: typing.Optional[str] = None, 2336 version: typing.Optional[str] = None, 2337 **kwargs, 2338 ) -> "StatefulSpanClient": 2339 """Create a span nested within the current observation or trace. 2340 2341 A span represents durations of units of work in a trace. 2342 2343 Args: 2344 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 2345 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2346 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2347 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2348 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2349 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2350 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2351 input (Optional[dict]): The input to the span. Can be any JSON object. 2352 output (Optional[dict]): The output to the span. Can be any JSON object. 2353 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2354 **kwargs: Additional keyword arguments to include in the span. 2355 2356 Returns: 2357 StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations. 2358 2359 Example: 2360 ```python 2361 from langfuse import Langfuse 2362 2363 langfuse = Langfuse() 2364 2365 # Create a trace 2366 trace = langfuse.trace(name = "llm-feature") 2367 2368 # Create a span 2369 retrieval = langfuse.span(name = "retrieval") 2370 ``` 2371 """ 2372 span_id = id or str(uuid.uuid4()) 2373 try: 2374 span_body = { 2375 "id": span_id, 2376 "name": name, 2377 "start_time": start_time or _get_timestamp(), 2378 "metadata": metadata, 2379 "input": input, 2380 "output": output, 2381 "level": level, 2382 "status_message": status_message, 2383 "version": version, 2384 "end_time": end_time, 2385 "environment": self.environment, 2386 **kwargs, 2387 } 2388 2389 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 2390 2391 new_dict = self._add_state_to_event(span_body) 2392 new_body = self._add_default_values(new_dict) 2393 2394 event = CreateSpanBody(**new_body) 2395 2396 event = { 2397 "id": str(uuid.uuid4()), 2398 "type": "span-create", 2399 "body": event, 2400 } 2401 2402 self.task_manager.add_task(event) 2403 except Exception as e: 2404 self.log.exception(e) 2405 finally: 2406 return StatefulSpanClient( 2407 self.client, 2408 span_id, 2409 StateType.OBSERVATION, 2410 self.trace_id, 2411 self.task_manager, 2412 self.environment, 2413 ) 2414 2415 @overload 2416 def score( 2417 self, 2418 *, 2419 id: typing.Optional[str] = None, 2420 name: str, 2421 value: float, 2422 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2423 comment: typing.Optional[str] = None, 2424 config_id: typing.Optional[str] = None, 2425 **kwargs, 2426 ) -> "StatefulClient": ... 2427 2428 @overload 2429 def score( 2430 self, 2431 *, 2432 id: typing.Optional[str] = None, 2433 name: str, 2434 value: str, 2435 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2436 comment: typing.Optional[str] = None, 2437 config_id: typing.Optional[str] = None, 2438 **kwargs, 2439 ) -> "StatefulClient": ... 2440 2441 def score( 2442 self, 2443 *, 2444 id: typing.Optional[str] = None, 2445 name: str, 2446 value: typing.Union[float, str], 2447 data_type: typing.Optional[ScoreDataType] = None, 2448 comment: typing.Optional[str] = None, 2449 config_id: typing.Optional[str] = None, 2450 **kwargs, 2451 ) -> "StatefulClient": 2452 """Create a score attached for the current observation or trace. 2453 2454 Args: 2455 name (str): Identifier of the score. 2456 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 2457 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 2458 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 2459 comment (Optional[str]): Additional context/explanation of the score. 2460 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 2461 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 2462 **kwargs: Additional keyword arguments to include in the score. 2463 2464 Returns: 2465 StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining. 2466 2467 Example: 2468 ```python 2469 from langfuse import Langfuse 2470 2471 langfuse = Langfuse() 2472 2473 # Create a trace 2474 trace = langfuse.trace(name="example-application") 2475 2476 # Add score to the trace 2477 trace = trace.score( 2478 name="user-explicit-feedback", 2479 value=0.8, 2480 comment="I like how personalized the response is" 2481 ) 2482 ``` 2483 """ 2484 score_id = id or str(uuid.uuid4()) 2485 try: 2486 new_score = { 2487 "id": score_id, 2488 "trace_id": self.trace_id, 2489 "name": name, 2490 "value": value, 2491 "data_type": data_type, 2492 "comment": comment, 2493 "config_id": config_id, 2494 "environment": self.environment, 2495 **kwargs, 2496 } 2497 2498 self.log.debug(f"Creating score {new_score}...") 2499 2500 new_dict = self._add_state_to_event(new_score) 2501 2502 if self.state_type == StateType.OBSERVATION: 2503 new_dict["observationId"] = self.id 2504 2505 request = ScoreBody(**new_dict) 2506 2507 event = { 2508 "id": str(uuid.uuid4()), 2509 "type": "score-create", 2510 "body": request, 2511 } 2512 2513 self.task_manager.add_task(event) 2514 2515 except Exception as e: 2516 self.log.exception(e) 2517 finally: 2518 return StatefulClient( 2519 self.client, 2520 self.id, 2521 self.state_type, 2522 self.trace_id, 2523 self.task_manager, 2524 self.environment, 2525 ) 2526 2527 def event( 2528 self, 2529 *, 2530 id: typing.Optional[str] = None, 2531 name: typing.Optional[str] = None, 2532 start_time: typing.Optional[dt.datetime] = None, 2533 metadata: typing.Optional[typing.Any] = None, 2534 input: typing.Optional[typing.Any] = None, 2535 output: typing.Optional[typing.Any] = None, 2536 level: typing.Optional[SpanLevel] = None, 2537 status_message: typing.Optional[str] = None, 2538 version: typing.Optional[str] = None, 2539 **kwargs, 2540 ) -> "StatefulClient": 2541 """Create an event nested within the current observation or trace. 2542 2543 An event represents a discrete event in a trace. 2544 2545 Args: 2546 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 2547 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 2548 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 2549 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 2550 input (Optional[Any]): The input to the event. Can be any JSON object. 2551 output (Optional[Any]): The output to the event. Can be any JSON object. 2552 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2553 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 2554 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 2555 **kwargs: Additional keyword arguments to include in the event. 2556 2557 Returns: 2558 StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations. 2559 2560 Example: 2561 ```python 2562 from langfuse import Langfuse 2563 2564 langfuse = Langfuse() 2565 2566 # Create a trace 2567 trace = langfuse.trace(name = "llm-feature") 2568 2569 # Create an event 2570 retrieval = trace.event(name = "retrieval") 2571 ``` 2572 """ 2573 event_id = id or str(uuid.uuid4()) 2574 try: 2575 event_body = { 2576 "id": event_id, 2577 "name": name, 2578 "start_time": start_time or _get_timestamp(), 2579 "metadata": metadata, 2580 "input": input, 2581 "output": output, 2582 "level": level, 2583 "status_message": status_message, 2584 "version": version, 2585 "environment": self.environment, 2586 **kwargs, 2587 } 2588 2589 new_dict = self._add_state_to_event(event_body) 2590 new_body = self._add_default_values(new_dict) 2591 2592 request = CreateEventBody(**new_body) 2593 2594 event = { 2595 "id": str(uuid.uuid4()), 2596 "type": "event-create", 2597 "body": request, 2598 } 2599 2600 self.log.debug( 2601 f"Creating event {_filter_io_from_event_body(event_body)}..." 2602 ) 2603 self.task_manager.add_task(event) 2604 2605 except Exception as e: 2606 self.log.exception(e) 2607 finally: 2608 return StatefulClient( 2609 self.client, 2610 event_id, 2611 StateType.OBSERVATION, 2612 self.trace_id, 2613 self.task_manager, 2614 self.environment, 2615 ) 2616 2617 def get_trace_url(self): 2618 """Get the URL to see the current trace in the Langfuse UI.""" 2619 return f"{self.client._client_wrapper._base_url}/trace/{self.trace_id}" 2620 2621 2622class StatefulGenerationClient(StatefulClient): 2623 """Class for handling stateful operations of generations in the Langfuse system. Inherits from StatefulClient. 2624 2625 This client extends the capabilities of the StatefulClient to specifically handle generation, 2626 allowing for the creation, update, and termination of generation processes in Langfuse. 2627 2628 Attributes: 2629 client (FernLangfuse): Core interface for Langfuse API interaction. 2630 id (str): Unique identifier of the generation. 2631 state_type (StateType): Type of the stateful entity (observation or trace). 2632 trace_id (str): Id of trace associated with the generation. 2633 task_manager (TaskManager): Manager for handling asynchronous tasks. 2634 """ 2635 2636 log = logging.getLogger("langfuse") 2637 2638 def __init__( 2639 self, 2640 client: FernLangfuse, 2641 id: str, 2642 state_type: StateType, 2643 trace_id: str, 2644 task_manager: TaskManager, 2645 environment: Optional[str] = None, 2646 ): 2647 """Initialize the StatefulGenerationClient.""" 2648 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2649 2650 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2651 def update( 2652 self, 2653 *, 2654 name: typing.Optional[str] = None, 2655 start_time: typing.Optional[dt.datetime] = None, 2656 end_time: typing.Optional[dt.datetime] = None, 2657 completion_start_time: typing.Optional[dt.datetime] = None, 2658 metadata: typing.Optional[typing.Any] = None, 2659 level: typing.Optional[SpanLevel] = None, 2660 status_message: typing.Optional[str] = None, 2661 version: typing.Optional[str] = None, 2662 model: typing.Optional[str] = None, 2663 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2664 input: typing.Optional[typing.Any] = None, 2665 output: typing.Optional[typing.Any] = None, 2666 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2667 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2668 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2669 prompt: typing.Optional[PromptClient] = None, 2670 **kwargs, 2671 ) -> "StatefulGenerationClient": 2672 """Update the generation. 2673 2674 Args: 2675 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2676 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2677 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2678 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2679 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2680 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2681 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2682 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2683 model (Optional[str]): The name of the model used for the generation. 2684 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2685 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2686 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2687 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2688 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2689 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2690 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2691 **kwargs: Additional keyword arguments to include in the generation. 2692 2693 Returns: 2694 StatefulGenerationClient: The updated generation. Passthrough for chaining. 2695 2696 Example: 2697 ```python 2698 from langfuse import Langfuse 2699 2700 langfuse = Langfuse() 2701 2702 # Create a trace 2703 trace = langfuse.trace(name = "llm-feature") 2704 2705 # Create a nested generation in Langfuse 2706 generation = trace.generation(name="summary-generation") 2707 2708 # Update the generation 2709 generation = generation.update(metadata={"interface": "whatsapp"}) 2710 ``` 2711 """ 2712 try: 2713 generation_body = { 2714 "id": self.id, 2715 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2716 "name": name, 2717 "start_time": start_time, 2718 "metadata": metadata, 2719 "level": level, 2720 "status_message": status_message, 2721 "version": version, 2722 "end_time": end_time, 2723 "completion_start_time": completion_start_time, 2724 "model": model, 2725 "model_parameters": model_parameters, 2726 "input": input, 2727 "output": output, 2728 "usage": _convert_usage_input(usage) if usage is not None else None, 2729 "usage_details": usage_details, 2730 "cost_details": cost_details, 2731 **_create_prompt_context(prompt), 2732 **kwargs, 2733 } 2734 2735 self.log.debug( 2736 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2737 ) 2738 2739 request = UpdateGenerationBody(**generation_body) 2740 2741 event = { 2742 "id": str(uuid.uuid4()), 2743 "type": "generation-update", 2744 "body": request.dict(exclude_none=True, exclude_unset=False), 2745 } 2746 2747 self.log.debug( 2748 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2749 ) 2750 self.task_manager.add_task(event) 2751 2752 except Exception as e: 2753 self.log.exception(e) 2754 finally: 2755 return StatefulGenerationClient( 2756 self.client, 2757 self.id, 2758 StateType.OBSERVATION, 2759 self.trace_id, 2760 self.task_manager, 2761 self.environment, 2762 ) 2763 2764 def end( 2765 self, 2766 *, 2767 name: typing.Optional[str] = None, 2768 start_time: typing.Optional[dt.datetime] = None, 2769 end_time: typing.Optional[dt.datetime] = None, 2770 completion_start_time: typing.Optional[dt.datetime] = None, 2771 metadata: typing.Optional[typing.Any] = None, 2772 level: typing.Optional[SpanLevel] = None, 2773 status_message: typing.Optional[str] = None, 2774 version: typing.Optional[str] = None, 2775 model: typing.Optional[str] = None, 2776 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2777 input: typing.Optional[typing.Any] = None, 2778 output: typing.Optional[typing.Any] = None, 2779 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2780 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2781 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2782 prompt: typing.Optional[PromptClient] = None, 2783 **kwargs, 2784 ) -> "StatefulGenerationClient": 2785 """End the generation, optionally updating its properties. 2786 2787 Args: 2788 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2789 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2790 end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time. 2791 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2792 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2793 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2794 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2795 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2796 model (Optional[str]): The name of the model used for the generation. 2797 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2798 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2799 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2800 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2801 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2802 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2803 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2804 **kwargs: Additional keyword arguments to include in the generation. 2805 2806 Returns: 2807 StatefulGenerationClient: The ended generation. Passthrough for chaining. 2808 2809 Example: 2810 ```python 2811 from langfuse import Langfuse 2812 2813 langfuse = Langfuse() 2814 2815 # Create a trace 2816 trace = langfuse.trace(name = "llm-feature") 2817 2818 # Create a nested generation in Langfuse 2819 generation = trace.generation(name="summary-generation") 2820 2821 # End the generation and update its properties 2822 generation = generation.end(metadata={"interface": "whatsapp"}) 2823 ``` 2824 """ 2825 return self.update( 2826 name=name, 2827 start_time=start_time, 2828 end_time=end_time or _get_timestamp(), 2829 metadata=metadata, 2830 level=level, 2831 status_message=status_message, 2832 version=version, 2833 completion_start_time=completion_start_time, 2834 model=model, 2835 model_parameters=model_parameters, 2836 input=input, 2837 output=output, 2838 usage=usage, 2839 usage_details=usage_details, 2840 cost_details=cost_details, 2841 prompt=prompt, 2842 **kwargs, 2843 ) 2844 2845 2846class StatefulSpanClient(StatefulClient): 2847 """Class for handling stateful operations of spans in the Langfuse system. Inherits from StatefulClient. 2848 2849 Attributes: 2850 client (FernLangfuse): Core interface for Langfuse API interaction. 2851 id (str): Unique identifier of the span. 2852 state_type (StateType): Type of the stateful entity (observation or trace). 2853 trace_id (str): Id of trace associated with the span. 2854 task_manager (TaskManager): Manager for handling asynchronous tasks. 2855 """ 2856 2857 log = logging.getLogger("langfuse") 2858 2859 def __init__( 2860 self, 2861 client: FernLangfuse, 2862 id: str, 2863 state_type: StateType, 2864 trace_id: str, 2865 task_manager: TaskManager, 2866 environment: Optional[str] = None, 2867 ): 2868 """Initialize the StatefulSpanClient.""" 2869 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2870 2871 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2872 def update( 2873 self, 2874 *, 2875 name: typing.Optional[str] = None, 2876 start_time: typing.Optional[dt.datetime] = None, 2877 end_time: typing.Optional[dt.datetime] = None, 2878 metadata: typing.Optional[typing.Any] = None, 2879 input: typing.Optional[typing.Any] = None, 2880 output: typing.Optional[typing.Any] = None, 2881 level: typing.Optional[SpanLevel] = None, 2882 status_message: typing.Optional[str] = None, 2883 version: typing.Optional[str] = None, 2884 **kwargs, 2885 ) -> "StatefulSpanClient": 2886 """Update the span. 2887 2888 Args: 2889 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2890 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2891 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2892 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2893 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2894 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2895 input (Optional[dict]): The input to the span. Can be any JSON object. 2896 output (Optional[dict]): The output to the span. Can be any JSON object. 2897 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2898 **kwargs: Additional keyword arguments to include in the span. 2899 2900 Returns: 2901 StatefulSpanClient: The updated span. Passthrough for chaining. 2902 2903 Example: 2904 ```python 2905 from langfuse import Langfuse 2906 2907 langfuse = Langfuse() 2908 2909 # Create a trace 2910 trace = langfuse.trace(name = "llm-feature") 2911 2912 # Create a nested span in Langfuse 2913 span = trace.span(name="retrieval") 2914 2915 # Update the span 2916 span = span.update(metadata={"interface": "whatsapp"}) 2917 ``` 2918 """ 2919 try: 2920 span_body = { 2921 "id": self.id, 2922 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2923 "name": name, 2924 "start_time": start_time, 2925 "metadata": metadata, 2926 "input": input, 2927 "output": output, 2928 "level": level, 2929 "status_message": status_message, 2930 "version": version, 2931 "end_time": end_time, 2932 **kwargs, 2933 } 2934 self.log.debug(f"Update span {_filter_io_from_event_body(span_body)}...") 2935 2936 request = UpdateSpanBody(**span_body) 2937 2938 event = { 2939 "id": str(uuid.uuid4()), 2940 "type": "span-update", 2941 "body": request, 2942 } 2943 2944 self.task_manager.add_task(event) 2945 except Exception as e: 2946 self.log.exception(e) 2947 finally: 2948 return StatefulSpanClient( 2949 self.client, 2950 self.id, 2951 StateType.OBSERVATION, 2952 self.trace_id, 2953 self.task_manager, 2954 self.environment, 2955 ) 2956 2957 def end( 2958 self, 2959 *, 2960 name: typing.Optional[str] = None, 2961 start_time: typing.Optional[dt.datetime] = None, 2962 end_time: typing.Optional[dt.datetime] = None, 2963 metadata: typing.Optional[typing.Any] = None, 2964 input: typing.Optional[typing.Any] = None, 2965 output: typing.Optional[typing.Any] = None, 2966 level: typing.Optional[SpanLevel] = None, 2967 status_message: typing.Optional[str] = None, 2968 version: typing.Optional[str] = None, 2969 **kwargs, 2970 ) -> "StatefulSpanClient": 2971 """End the span, optionally updating its properties. 2972 2973 Args: 2974 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2975 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2976 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2977 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2978 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2979 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2980 input (Optional[dict]): The input to the span. Can be any JSON object. 2981 output (Optional[dict]): The output to the span. Can be any JSON object. 2982 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2983 **kwargs: Additional keyword arguments to include in the span. 2984 2985 Returns: 2986 StatefulSpanClient: The updated span. Passthrough for chaining. 2987 2988 Example: 2989 ```python 2990 from langfuse import Langfuse 2991 2992 langfuse = Langfuse() 2993 2994 # Create a trace 2995 trace = langfuse.trace(name = "llm-feature") 2996 2997 # Create a nested span in Langfuse 2998 span = trace.span(name="retrieval") 2999 3000 # End the span and update its properties 3001 span = span.end(metadata={"interface": "whatsapp"}) 3002 ``` 3003 """ 3004 try: 3005 span_body = { 3006 "name": name, 3007 "start_time": start_time, 3008 "metadata": metadata, 3009 "input": input, 3010 "output": output, 3011 "level": level, 3012 "status_message": status_message, 3013 "version": version, 3014 "end_time": end_time or _get_timestamp(), 3015 **kwargs, 3016 } 3017 return self.update(**span_body) 3018 3019 except Exception as e: 3020 self.log.warning(e) 3021 finally: 3022 return StatefulSpanClient( 3023 self.client, 3024 self.id, 3025 StateType.OBSERVATION, 3026 self.trace_id, 3027 self.task_manager, 3028 self.environment, 3029 ) 3030 3031 def get_langchain_handler(self, update_parent: bool = False): 3032 """Get langchain callback handler associated with the current span. 3033 3034 Args: 3035 update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run. 3036 3037 Returns: 3038 CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient. 3039 """ 3040 from langfuse.callback import CallbackHandler 3041 3042 return CallbackHandler( 3043 stateful_client=self, update_stateful_client=update_parent 3044 ) 3045 3046 3047class StatefulTraceClient(StatefulClient): 3048 """Class for handling stateful operations of traces in the Langfuse system. Inherits from StatefulClient. 3049 3050 Attributes: 3051 client (FernLangfuse): Core interface for Langfuse API interaction. 3052 id (str): Unique identifier of the trace. 3053 state_type (StateType): Type of the stateful entity (observation or trace). 3054 trace_id (str): The trace ID associated with this client. 3055 task_manager (TaskManager): Manager for handling asynchronous tasks. 3056 """ 3057 3058 log = logging.getLogger("langfuse") 3059 3060 def __init__( 3061 self, 3062 client: FernLangfuse, 3063 id: str, 3064 state_type: StateType, 3065 trace_id: str, 3066 task_manager: TaskManager, 3067 environment: Optional[str] = None, 3068 ): 3069 """Initialize the StatefulTraceClient.""" 3070 super().__init__(client, id, state_type, trace_id, task_manager, environment) 3071 self.task_manager = task_manager 3072 3073 def update( 3074 self, 3075 *, 3076 name: typing.Optional[str] = None, 3077 user_id: typing.Optional[str] = None, 3078 session_id: typing.Optional[str] = None, 3079 version: typing.Optional[str] = None, 3080 release: typing.Optional[str] = None, 3081 input: typing.Optional[typing.Any] = None, 3082 output: typing.Optional[typing.Any] = None, 3083 metadata: typing.Optional[typing.Any] = None, 3084 tags: typing.Optional[typing.List[str]] = None, 3085 public: typing.Optional[bool] = None, 3086 **kwargs, 3087 ) -> "StatefulTraceClient": 3088 """Update the trace. 3089 3090 Args: 3091 name: Identifier of the trace. Useful for sorting/filtering in the UI. 3092 input: The input of the trace. Can be any JSON object. 3093 output: The output of the trace. Can be any JSON object. 3094 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 3095 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 3096 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 3097 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 3098 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 3099 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 3100 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 3101 **kwargs: Additional keyword arguments that can be included in the trace. 3102 3103 Returns: 3104 StatefulTraceClient: The updated trace. Passthrough for chaining. 3105 3106 Example: 3107 ```python 3108 from langfuse import Langfuse 3109 3110 langfuse = Langfuse() 3111 3112 # Create a trace 3113 trace = langfuse.trace( 3114 name="example-application", 3115 user_id="user-1234") 3116 ) 3117 3118 # Update the trace 3119 trace = trace.update( 3120 output={"result": "success"}, 3121 metadata={"interface": "whatsapp"} 3122 ) 3123 ``` 3124 """ 3125 try: 3126 trace_body = { 3127 "id": self.id, 3128 "name": name, 3129 "userId": user_id, 3130 "sessionId": session_id 3131 or kwargs.get("sessionId", None), # backward compatibility 3132 "version": version, 3133 "release": release, 3134 "input": input, 3135 "output": output, 3136 "metadata": metadata, 3137 "public": public, 3138 "tags": tags, 3139 **kwargs, 3140 } 3141 self.log.debug(f"Update trace {_filter_io_from_event_body(trace_body)}...") 3142 3143 request = TraceBody(**trace_body) 3144 3145 event = { 3146 "id": str(uuid.uuid4()), 3147 "type": "trace-create", 3148 "body": request, 3149 } 3150 3151 self.task_manager.add_task(event) 3152 3153 except Exception as e: 3154 self.log.exception(e) 3155 finally: 3156 return StatefulTraceClient( 3157 self.client, 3158 self.id, 3159 StateType.TRACE, 3160 self.trace_id, 3161 self.task_manager, 3162 self.environment, 3163 ) 3164 3165 def get_langchain_handler(self, update_parent: bool = False): 3166 """Get langchain callback handler associated with the current trace. 3167 3168 This method creates and returns a CallbackHandler instance, linking it with the current 3169 trace. Use this if you want to group multiple Langchain runs within a single trace. 3170 3171 Args: 3172 update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run. 3173 3174 Raises: 3175 ImportError: If the 'langchain' module is not installed, indicating missing functionality. 3176 3177 Returns: 3178 CallbackHandler: Langchain callback handler linked to the current trace. 3179 3180 Example: 3181 ```python 3182 from langfuse import Langfuse 3183 3184 langfuse = Langfuse() 3185 3186 # Create a trace 3187 trace = langfuse.trace(name = "llm-feature") 3188 3189 # Get a langchain callback handler 3190 handler = trace.get_langchain_handler() 3191 ``` 3192 """ 3193 try: 3194 from langfuse.callback import CallbackHandler 3195 3196 self.log.debug(f"Creating new handler for trace {self.id}") 3197 3198 return CallbackHandler( 3199 stateful_client=self, 3200 debug=self.log.level == logging.DEBUG, 3201 update_stateful_client=update_parent, 3202 ) 3203 except Exception as e: 3204 self.log.exception(e) 3205 3206 def getNewHandler(self): 3207 """Alias for the `get_langchain_handler` method. Retrieves a callback handler for the trace. Deprecated.""" 3208 return self.get_langchain_handler() 3209 3210 3211class DatasetItemClient: 3212 """Class for managing dataset items in Langfuse. 3213 3214 Args: 3215 id (str): Unique identifier of the dataset item. 3216 status (DatasetStatus): The status of the dataset item. Can be either 'ACTIVE' or 'ARCHIVED'. 3217 input (Any): Input data of the dataset item. 3218 expected_output (Optional[Any]): Expected output of the dataset item. 3219 metadata (Optional[Any]): Additional metadata of the dataset item. 3220 source_trace_id (Optional[str]): Identifier of the source trace. 3221 source_observation_id (Optional[str]): Identifier of the source observation. 3222 dataset_id (str): Identifier of the dataset to which this item belongs. 3223 dataset_name (str): Name of the dataset to which this item belongs. 3224 created_at (datetime): Timestamp of dataset item creation. 3225 updated_at (datetime): Timestamp of the last update to the dataset item. 3226 langfuse (Langfuse): Instance of Langfuse client for API interactions. 3227 3228 Example: 3229 ```python 3230 from langfuse import Langfuse 3231 3232 langfuse = Langfuse() 3233 3234 dataset = langfuse.get_dataset("<dataset_name>") 3235 3236 for item in dataset.items: 3237 # Generate a completion using the input of every item 3238 completion, generation = llm_app.run(item.input) 3239 3240 # Evaluate the completion 3241 generation.score( 3242 name="example-score", 3243 value=1 3244 ) 3245 ``` 3246 """ 3247 3248 log = logging.getLogger("langfuse") 3249 3250 id: str 3251 status: DatasetStatus 3252 input: typing.Any 3253 expected_output: typing.Optional[typing.Any] 3254 metadata: Optional[Any] 3255 source_trace_id: typing.Optional[str] 3256 source_observation_id: typing.Optional[str] 3257 dataset_id: str 3258 dataset_name: str 3259 created_at: dt.datetime 3260 updated_at: dt.datetime 3261 3262 langfuse: Langfuse 3263 3264 def __init__(self, dataset_item: DatasetItem, langfuse: Langfuse): 3265 """Initialize the DatasetItemClient.""" 3266 self.id = dataset_item.id 3267 self.status = dataset_item.status 3268 self.input = dataset_item.input 3269 self.expected_output = dataset_item.expected_output 3270 self.metadata = dataset_item.metadata 3271 self.source_trace_id = dataset_item.source_trace_id 3272 self.source_observation_id = dataset_item.source_observation_id 3273 self.dataset_id = dataset_item.dataset_id 3274 self.dataset_name = dataset_item.dataset_name 3275 self.created_at = dataset_item.created_at 3276 self.updated_at = dataset_item.updated_at 3277 3278 self.langfuse = langfuse 3279 3280 def flush(self, observation: StatefulClient, run_name: str): 3281 """Flushes an observations task manager's queue. 3282 3283 Used before creating a dataset run item to ensure all events are persistent. 3284 3285 Args: 3286 observation (StatefulClient): The observation or trace client associated with the dataset item. 3287 run_name (str): The name of the dataset run. 3288 """ 3289 observation.task_manager.flush() 3290 3291 def link( 3292 self, 3293 trace_or_observation: typing.Union[StatefulClient, str, None], 3294 run_name: str, 3295 run_metadata: Optional[Any] = None, 3296 run_description: Optional[str] = None, 3297 trace_id: Optional[str] = None, 3298 observation_id: Optional[str] = None, 3299 ): 3300 """Link the dataset item to observation within a specific dataset run. Creates a dataset run item. 3301 3302 Args: 3303 trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID. 3304 run_name (str): The name of the dataset run. 3305 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3306 run_description (Optional[str]): Description of the dataset run. 3307 trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided. 3308 observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided. 3309 """ 3310 parsed_trace_id: str = None 3311 parsed_observation_id: str = None 3312 3313 if isinstance(trace_or_observation, StatefulClient): 3314 # flush the queue before creating the dataset run item 3315 # to ensure that all events are persisted. 3316 if trace_or_observation.state_type == StateType.TRACE: 3317 parsed_trace_id = trace_or_observation.trace_id 3318 elif trace_or_observation.state_type == StateType.OBSERVATION: 3319 parsed_observation_id = trace_or_observation.id 3320 parsed_trace_id = trace_or_observation.trace_id 3321 # legacy support for observation_id 3322 elif isinstance(trace_or_observation, str): 3323 parsed_observation_id = trace_or_observation 3324 elif trace_or_observation is None: 3325 if trace_id is not None: 3326 parsed_trace_id = trace_id 3327 if observation_id is not None: 3328 parsed_observation_id = observation_id 3329 else: 3330 raise ValueError( 3331 "trace_id must be provided if trace_or_observation is None" 3332 ) 3333 else: 3334 raise ValueError( 3335 "trace_or_observation (arg) or trace_id (kwarg) must be provided to link the dataset item" 3336 ) 3337 3338 self.log.debug( 3339 f"Creating dataset run item: {run_name} {self.id} {parsed_trace_id} {parsed_observation_id}" 3340 ) 3341 self.langfuse.client.dataset_run_items.create( 3342 request=CreateDatasetRunItemRequest( 3343 runName=run_name, 3344 datasetItemId=self.id, 3345 traceId=parsed_trace_id, 3346 observationId=parsed_observation_id, 3347 metadata=run_metadata, 3348 runDescription=run_description, 3349 ) 3350 ) 3351 3352 def get_langchain_handler( 3353 self, 3354 *, 3355 run_name: str, 3356 run_description: Optional[str] = None, 3357 run_metadata: Optional[Any] = None, 3358 ): 3359 """Create and get a langchain callback handler linked to this dataset item. 3360 3361 Args: 3362 run_name (str): The name of the dataset run to be used in the callback handler. 3363 run_description (Optional[str]): Description of the dataset run. 3364 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3365 3366 Returns: 3367 CallbackHandler: An instance of CallbackHandler linked to the dataset item. 3368 """ 3369 metadata = { 3370 "dataset_item_id": self.id, 3371 "run_name": run_name, 3372 "dataset_id": self.dataset_id, 3373 } 3374 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3375 3376 self.link( 3377 trace, run_name, run_metadata=run_metadata, run_description=run_description 3378 ) 3379 3380 return trace.get_langchain_handler(update_parent=True) 3381 3382 @contextmanager 3383 def observe( 3384 self, 3385 *, 3386 run_name: str, 3387 run_description: Optional[str] = None, 3388 run_metadata: Optional[Any] = None, 3389 trace_id: Optional[str] = None, 3390 ): 3391 """Observes a dataset run within the Langfuse client. 3392 3393 Args: 3394 run_name (str): The name of the dataset run. 3395 root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created. 3396 run_description (Optional[str]): The description of the dataset run. 3397 run_metadata (Optional[Any]): Additional metadata for the dataset run. 3398 3399 Yields: 3400 StatefulTraceClient: The trace associated with the dataset run. 3401 """ 3402 from langfuse.decorators import langfuse_context 3403 3404 root_trace_id = trace_id or str(uuid.uuid4()) 3405 3406 langfuse_context._set_root_trace_id(root_trace_id) 3407 3408 try: 3409 yield root_trace_id 3410 3411 finally: 3412 self.link( 3413 run_name=run_name, 3414 run_metadata=run_metadata, 3415 run_description=run_description, 3416 trace_or_observation=None, 3417 trace_id=root_trace_id, 3418 ) 3419 3420 @contextmanager 3421 def observe_llama_index( 3422 self, 3423 *, 3424 run_name: str, 3425 run_description: Optional[str] = None, 3426 run_metadata: Optional[Any] = None, 3427 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3428 ): 3429 """Context manager for observing LlamaIndex operations linked to this dataset item. 3430 3431 This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging 3432 and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all 3433 operations performed within the context are linked to the appropriate dataset item and run in Langfuse. 3434 3435 Args: 3436 run_name (str): The name of the dataset run. 3437 run_description (Optional[str]): Description of the dataset run. Defaults to None. 3438 run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None. 3439 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass 3440 to the LlamaIndex integration constructor. Defaults to an empty dictionary. 3441 3442 Yields: 3443 LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations. 3444 3445 Example: 3446 ```python 3447 dataset_item = dataset.items[0] 3448 3449 with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: 3450 # Perform LlamaIndex operations here 3451 some_llama_index_operation() 3452 ``` 3453 3454 Raises: 3455 ImportError: If required modules for LlamaIndex integration are not available. 3456 """ 3457 metadata = { 3458 "dataset_item_id": self.id, 3459 "run_name": run_name, 3460 "dataset_id": self.dataset_id, 3461 } 3462 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3463 self.link( 3464 trace, run_name, run_metadata=run_metadata, run_description=run_description 3465 ) 3466 3467 try: 3468 import llama_index.core 3469 from llama_index.core import Settings 3470 from llama_index.core.callbacks import CallbackManager 3471 3472 from langfuse.llama_index import LlamaIndexCallbackHandler 3473 3474 callback_handler = LlamaIndexCallbackHandler( 3475 **llama_index_integration_constructor_kwargs, 3476 ) 3477 callback_handler.set_root(trace, update_root=True) 3478 3479 # Temporarily set the global handler to the new handler if previous handler is a LlamaIndexCallbackHandler 3480 # LlamaIndex does not adding two errors of same type, so if global handler is already a LlamaIndexCallbackHandler, we need to remove it 3481 prev_global_handler = llama_index.core.global_handler 3482 prev_langfuse_handler = None 3483 3484 if isinstance(prev_global_handler, LlamaIndexCallbackHandler): 3485 llama_index.core.global_handler = None 3486 3487 if Settings.callback_manager is None: 3488 Settings.callback_manager = CallbackManager([callback_handler]) 3489 else: 3490 for handler in Settings.callback_manager.handlers: 3491 if isinstance(handler, LlamaIndexCallbackHandler): 3492 prev_langfuse_handler = handler 3493 Settings.callback_manager.remove_handler(handler) 3494 3495 Settings.callback_manager.add_handler(callback_handler) 3496 3497 except Exception as e: 3498 self.log.exception(e) 3499 3500 try: 3501 yield callback_handler 3502 finally: 3503 # Reset the handlers 3504 Settings.callback_manager.remove_handler(callback_handler) 3505 if prev_langfuse_handler is not None: 3506 Settings.callback_manager.add_handler(prev_langfuse_handler) 3507 3508 llama_index.core.global_handler = prev_global_handler 3509 3510 def get_llama_index_handler( 3511 self, 3512 *, 3513 run_name: str, 3514 run_description: Optional[str] = None, 3515 run_metadata: Optional[Any] = None, 3516 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3517 ): 3518 """Create and get a llama-index callback handler linked to this dataset item. 3519 3520 Args: 3521 run_name (str): The name of the dataset run to be used in the callback handler. 3522 run_description (Optional[str]): Description of the dataset run. 3523 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3524 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor. 3525 3526 Returns: 3527 LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item. 3528 """ 3529 metadata = { 3530 "dataset_item_id": self.id, 3531 "run_name": run_name, 3532 "dataset_id": self.dataset_id, 3533 } 3534 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3535 3536 self.link( 3537 trace, run_name, run_metadata=run_metadata, run_description=run_description 3538 ) 3539 3540 try: 3541 from langfuse.llama_index.llama_index import LlamaIndexCallbackHandler 3542 3543 callback_handler = LlamaIndexCallbackHandler( 3544 **llama_index_integration_constructor_kwargs, 3545 ) 3546 callback_handler.set_root(trace, update_root=True) 3547 3548 return callback_handler 3549 except Exception as e: 3550 self.log.exception(e) 3551 3552 3553class DatasetClient: 3554 """Class for managing datasets in Langfuse. 3555 3556 Attributes: 3557 id (str): Unique identifier of the dataset. 3558 name (str): Name of the dataset. 3559 description (Optional[str]): Description of the dataset. 3560 metadata (Optional[typing.Any]): Additional metadata of the dataset. 3561 project_id (str): Identifier of the project to which the dataset belongs. 3562 dataset_name (str): Name of the dataset. 3563 created_at (datetime): Timestamp of dataset creation. 3564 updated_at (datetime): Timestamp of the last update to the dataset. 3565 items (List[DatasetItemClient]): List of dataset items associated with the dataset. 3566 runs (List[str]): List of dataset runs associated with the dataset. Deprecated. 3567 3568 Example: 3569 Print the input of each dataset item in a dataset. 3570 ```python 3571 from langfuse import Langfuse 3572 3573 langfuse = Langfuse() 3574 3575 dataset = langfuse.get_dataset("<dataset_name>") 3576 3577 for item in dataset.items: 3578 print(item.input) 3579 ``` 3580 """ 3581 3582 id: str 3583 name: str 3584 description: Optional[str] 3585 project_id: str 3586 dataset_name: str # for backward compatibility, to be deprecated 3587 metadata: Optional[Any] 3588 created_at: dt.datetime 3589 updated_at: dt.datetime 3590 items: typing.List[DatasetItemClient] 3591 runs: typing.List[str] = [] # deprecated 3592 3593 def __init__(self, dataset: Dataset, items: typing.List[DatasetItemClient]): 3594 """Initialize the DatasetClient.""" 3595 self.id = dataset.id 3596 self.name = dataset.name 3597 self.description = dataset.description 3598 self.project_id = dataset.project_id 3599 self.metadata = dataset.metadata 3600 self.dataset_name = dataset.name # for backward compatibility, to be deprecated 3601 self.created_at = dataset.created_at 3602 self.updated_at = dataset.updated_at 3603 self.items = items 3604 3605 3606def _filter_io_from_event_body(event_body: Dict[str, Any]): 3607 return { 3608 k: v for k, v in event_body.items() if k not in ("input", "output", "metadata") 3609 }
94@dataclass 95class FetchTracesResponse: 96 """Response object for fetch_traces method.""" 97 98 data: typing.List[TraceWithDetails] 99 meta: MetaResponse
Response object for fetch_traces method.
102@dataclass 103class FetchTraceResponse: 104 """Response object for fetch_trace method.""" 105 106 data: TraceWithFullDetails
Response object for fetch_trace method.
109@dataclass 110class FetchObservationsResponse: 111 """Response object for fetch_observations method.""" 112 113 data: typing.List[ObservationsView] 114 meta: MetaResponse
Response object for fetch_observations method.
117@dataclass 118class FetchObservationResponse: 119 """Response object for fetch_observation method.""" 120 121 data: Observation
Response object for fetch_observation method.
124@dataclass 125class FetchMediaResponse: 126 """Response object for fetch_media method.""" 127 128 data: GetMediaResponse
Response object for fetch_media method.
131@dataclass 132class FetchSessionsResponse: 133 """Response object for fetch_sessions method.""" 134 135 data: typing.List[Session] 136 meta: MetaResponse
Response object for fetch_sessions method.
139class Langfuse(object): 140 """Langfuse Python client. 141 142 Attributes: 143 log (logging.Logger): Logger for the Langfuse client. 144 base_url (str): Base URL of the Langfuse API, serving as the root address for API endpoint construction. 145 httpx_client (httpx.Client): HTTPX client utilized for executing requests to the Langfuse API. 146 client (FernLangfuse): Core interface for Langfuse API interaction. 147 task_manager (TaskManager): Task Manager dedicated to handling asynchronous tasks. 148 release (str): Identifies the release number or hash of the application. 149 prompt_cache (PromptCache): A cache for efficiently storing and retrieving PromptClient instances. 150 151 Example: 152 Initiating the Langfuse client should always be first step to use Langfuse. 153 ```python 154 import os 155 from langfuse import Langfuse 156 157 # Set the public and secret keys as environment variables 158 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 159 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 160 161 # Initialize the Langfuse client using the credentials 162 langfuse = Langfuse() 163 ``` 164 """ 165 166 log = logging.getLogger("langfuse") 167 """Logger for the Langfuse client.""" 168 169 host: str 170 """Host of Langfuse API.""" 171 172 project_id: Optional[str] 173 """Project ID of the Langfuse project associated with the API keys provided.""" 174 175 def __init__( 176 self, 177 public_key: Optional[str] = None, 178 secret_key: Optional[str] = None, 179 host: Optional[str] = None, 180 release: Optional[str] = None, 181 debug: bool = False, 182 threads: Optional[int] = None, 183 flush_at: Optional[int] = None, 184 flush_interval: Optional[float] = None, 185 max_retries: Optional[int] = None, 186 timeout: Optional[int] = None, # seconds 187 sdk_integration: Optional[str] = "default", 188 httpx_client: Optional[httpx.Client] = None, 189 enabled: Optional[bool] = True, 190 sample_rate: Optional[float] = None, 191 mask: Optional[MaskFunction] = None, 192 environment: Optional[str] = None, 193 ): 194 """Initialize the Langfuse client. 195 196 Args: 197 public_key: Public API key of Langfuse project. Can be set via `LANGFUSE_PUBLIC_KEY` environment variable. 198 secret_key: Secret API key of Langfuse project. Can be set via `LANGFUSE_SECRET_KEY` environment variable. 199 host: Host of Langfuse API. Can be set via `LANGFUSE_HOST` environment variable. Defaults to `https://cloud.langfuse.com`. 200 release: Release number/hash of the application to provide analytics grouped by release. Can be set via `LANGFUSE_RELEASE` environment variable. 201 debug: Enables debug mode for more verbose logging. Can be set via `LANGFUSE_DEBUG` environment variable. 202 threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues. 203 flush_at: Max batch size that's sent to the API. 204 flush_interval: Max delay until a new batch is sent to the API. 205 max_retries: Max number of retries in case of API/network errors. 206 timeout: Timeout of API requests in seconds. Defaults to 20 seconds. 207 httpx_client: Pass your own httpx client for more customizability of requests. 208 sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly. 209 enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops. 210 sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via `LANGFUSE_SAMPLE_RATE` environment variable. 211 mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument `data` and return a serializable, masked version of the data. 212 environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via `LANGFUSE_TRACING_ENVIRONMENT` environment variable. 213 214 Raises: 215 ValueError: If public_key or secret_key are not set and not found in environment variables. 216 217 Example: 218 Initiating the Langfuse client should always be first step to use Langfuse. 219 ```python 220 import os 221 from langfuse import Langfuse 222 223 # Set the public and secret keys as environment variables 224 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 225 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 226 227 # Initialize the Langfuse client using the credentials 228 langfuse = Langfuse() 229 ``` 230 """ 231 self.enabled = enabled 232 public_key = public_key or os.environ.get("LANGFUSE_PUBLIC_KEY") 233 secret_key = secret_key or os.environ.get("LANGFUSE_SECRET_KEY") 234 sample_rate = ( 235 sample_rate 236 if sample_rate 237 is not None # needs explicit None check, as 0 is a valid value 238 else float(os.environ.get("LANGFUSE_SAMPLE_RATE", 1.0)) 239 ) 240 241 if sample_rate is not None and ( 242 sample_rate > 1 or sample_rate < 0 243 ): # default value 1 will be set in the taskmanager 244 self.enabled = False 245 self.log.warning( 246 "Langfuse client is disabled since the sample rate provided is not between 0 and 1." 247 ) 248 249 threads = threads or int(os.environ.get("LANGFUSE_THREADS", 1)) 250 flush_at = flush_at or int(os.environ.get("LANGFUSE_FLUSH_AT", 15)) 251 flush_interval = flush_interval or float( 252 os.environ.get("LANGFUSE_FLUSH_INTERVAL", 0.5) 253 ) 254 255 max_retries = max_retries or int(os.environ.get("LANGFUSE_MAX_RETRIES", 3)) 256 timeout = timeout or int(os.environ.get("LANGFUSE_TIMEOUT", 20)) 257 258 if not self.enabled: 259 self.log.warning( 260 "Langfuse client is disabled. No observability data will be sent." 261 ) 262 263 elif not public_key: 264 self.enabled = False 265 self.log.warning( 266 "Langfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 267 ) 268 269 elif not secret_key: 270 self.enabled = False 271 self.log.warning( 272 "Langfuse client is disabled since no secret_key was provided as a parameter or environment variable 'LANGFUSE_SECRET_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 273 ) 274 275 set_debug = debug if debug else (os.getenv("LANGFUSE_DEBUG", "False") == "True") 276 277 if set_debug is True: 278 # Ensures that debug level messages are logged when debug mode is on. 279 # Otherwise, defaults to WARNING level. 280 # See https://docs.python.org/3/howto/logging.html#what-happens-if-no-configuration-is-provided 281 logging.basicConfig() 282 # Set level for all loggers under langfuse package 283 logging.getLogger("langfuse").setLevel(logging.DEBUG) 284 285 clean_logger() 286 else: 287 logging.getLogger("langfuse").setLevel(logging.WARNING) 288 clean_logger() 289 290 self.base_url = ( 291 host 292 if host 293 else os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") 294 ) 295 296 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 297 298 if self.environment and not bool( 299 re.match(ENVIRONMENT_PATTERN, self.environment) 300 ): 301 self.log.error( 302 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Events will be rejected by Langfuse servers.' 303 ) 304 305 self.httpx_client = httpx_client or httpx.Client(timeout=timeout) 306 307 public_api_client = FernLangfuse( 308 base_url=self.base_url, 309 username=public_key, 310 password=secret_key, 311 x_langfuse_sdk_name="python", 312 x_langfuse_sdk_version=version, 313 x_langfuse_public_key=public_key, 314 httpx_client=self.httpx_client, 315 timeout=timeout, 316 ) 317 async_public_api_client = AsyncFernLangfuse( 318 base_url=self.base_url, 319 username=public_key, 320 password=secret_key, 321 x_langfuse_sdk_name="python", 322 x_langfuse_sdk_version=version, 323 x_langfuse_public_key=public_key, 324 timeout=timeout, 325 ) 326 327 self.api = public_api_client 328 self.client = public_api_client # legacy, to be removed in next major release 329 self.async_api = async_public_api_client 330 331 langfuse_client = LangfuseClient( 332 public_key=public_key, 333 secret_key=secret_key, 334 base_url=self.base_url, 335 version=version, 336 timeout=timeout, 337 session=self.httpx_client, 338 ) 339 340 args = { 341 "threads": threads, 342 "flush_at": flush_at, 343 "flush_interval": flush_interval, 344 "max_retries": max_retries, 345 "client": langfuse_client, 346 "api_client": self.client, 347 "public_key": public_key, 348 "sdk_name": "python", 349 "sdk_version": version, 350 "sdk_integration": sdk_integration, 351 "enabled": self.enabled, 352 "sample_rate": sample_rate, 353 "mask": mask, 354 } 355 356 self.task_manager = TaskManager(**args) 357 358 self.trace_id = None 359 self.project_id = None 360 361 self.release = self._get_release_value(release) 362 363 self.prompt_cache = PromptCache() 364 365 def _get_release_value(self, release: Optional[str] = None) -> Optional[str]: 366 if release: 367 return release 368 elif "LANGFUSE_RELEASE" in os.environ: 369 return os.environ["LANGFUSE_RELEASE"] 370 else: 371 return get_common_release_envs() 372 373 def _get_project_id(self) -> Optional[str]: 374 """Fetch and return the current project id. Persisted across requests. Returns None if no project id is found for api keys.""" 375 if not self.project_id: 376 proj = self.client.projects.get() 377 if not proj.data or not proj.data[0].id: 378 return None 379 380 self.project_id = proj.data[0].id 381 382 return self.project_id 383 384 def get_trace_id(self) -> str: 385 """Get the current trace id.""" 386 return self.trace_id 387 388 def get_trace_url(self) -> str: 389 """Get the URL of the current trace to view it in the Langfuse UI.""" 390 project_id = self._get_project_id() 391 if not project_id: 392 return f"{self.base_url}/trace/{self.trace_id}" 393 394 return f"{self.base_url}/project/{project_id}/traces/{self.trace_id}" 395 396 def get_dataset( 397 self, name: str, *, fetch_items_page_size: Optional[int] = 50 398 ) -> "DatasetClient": 399 """Fetch a dataset by its name. 400 401 Args: 402 name (str): The name of the dataset to fetch. 403 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 404 405 Returns: 406 DatasetClient: The dataset with the given name. 407 """ 408 try: 409 self.log.debug(f"Getting datasets {name}") 410 dataset = self.client.datasets.get(dataset_name=name) 411 412 dataset_items = [] 413 page = 1 414 while True: 415 new_items = self.client.dataset_items.list( 416 dataset_name=self._url_encode(name), 417 page=page, 418 limit=fetch_items_page_size, 419 ) 420 dataset_items.extend(new_items.data) 421 if new_items.meta.total_pages <= page: 422 break 423 page += 1 424 425 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 426 427 return DatasetClient(dataset, items=items) 428 except Exception as e: 429 handle_fern_exception(e) 430 raise e 431 432 def get_dataset_item(self, id: str) -> "DatasetItemClient": 433 """Get the dataset item with the given id.""" 434 try: 435 self.log.debug(f"Getting dataset item {id}") 436 dataset_item = self.client.dataset_items.get(id=id) 437 return DatasetItemClient(dataset_item, langfuse=self) 438 except Exception as e: 439 handle_fern_exception(e) 440 raise e 441 442 def auth_check(self) -> bool: 443 """Check if the provided credentials (public and secret key) are valid. 444 445 Raises: 446 Exception: If no projects were found for the provided credentials. 447 448 Note: 449 This method is blocking. It is discouraged to use it in production code. 450 """ 451 try: 452 projects = self.client.projects.get() 453 self.log.debug( 454 f"Auth check successful, found {len(projects.data)} projects" 455 ) 456 if len(projects.data) == 0: 457 raise Exception( 458 "Auth check failed, no project found for the keys provided." 459 ) 460 return True 461 462 except Exception as e: 463 handle_fern_exception(e) 464 raise e 465 466 def get_dataset_runs( 467 self, 468 dataset_name: str, 469 *, 470 page: typing.Optional[int] = None, 471 limit: typing.Optional[int] = None, 472 ) -> PaginatedDatasetRuns: 473 """Get all dataset runs. 474 475 Args: 476 dataset_name (str): Name of the dataset. 477 page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None. 478 limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50. 479 480 Returns: 481 PaginatedDatasetRuns: The dataset runs. 482 """ 483 try: 484 self.log.debug("Getting dataset runs") 485 return self.client.datasets.get_runs( 486 dataset_name=self._url_encode(dataset_name), page=page, limit=limit 487 ) 488 except Exception as e: 489 handle_fern_exception(e) 490 raise e 491 492 def get_dataset_run( 493 self, 494 dataset_name: str, 495 dataset_run_name: str, 496 ) -> DatasetRunWithItems: 497 """Get a dataset run. 498 499 Args: 500 dataset_name: Name of the dataset. 501 dataset_run_name: Name of the dataset run. 502 503 Returns: 504 DatasetRunWithItems: The dataset run. 505 """ 506 try: 507 self.log.debug( 508 f"Getting dataset runs for dataset {dataset_name} and run {dataset_run_name}" 509 ) 510 return self.client.datasets.get_run( 511 dataset_name=self._url_encode(dataset_name), 512 run_name=self._url_encode(dataset_run_name), 513 ) 514 except Exception as e: 515 handle_fern_exception(e) 516 raise e 517 518 def create_dataset( 519 self, 520 name: str, 521 description: Optional[str] = None, 522 metadata: Optional[Any] = None, 523 ) -> Dataset: 524 """Create a dataset with the given name on Langfuse. 525 526 Args: 527 name: Name of the dataset to create. 528 description: Description of the dataset. Defaults to None. 529 metadata: Additional metadata. Defaults to None. 530 531 Returns: 532 Dataset: The created dataset as returned by the Langfuse API. 533 """ 534 try: 535 body = CreateDatasetRequest( 536 name=name, description=description, metadata=metadata 537 ) 538 self.log.debug(f"Creating datasets {body}") 539 return self.client.datasets.create(request=body) 540 except Exception as e: 541 handle_fern_exception(e) 542 raise e 543 544 def create_dataset_item( 545 self, 546 dataset_name: str, 547 input: Optional[Any] = None, 548 expected_output: Optional[Any] = None, 549 metadata: Optional[Any] = None, 550 source_trace_id: Optional[str] = None, 551 source_observation_id: Optional[str] = None, 552 status: Optional[DatasetStatus] = None, 553 id: Optional[str] = None, 554 ) -> DatasetItem: 555 """Create a dataset item. 556 557 Upserts if an item with id already exists. 558 559 Args: 560 dataset_name: Name of the dataset in which the dataset item should be created. 561 input: Input data. Defaults to None. Can contain any dict, list or scalar. 562 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 563 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 564 source_trace_id: Id of the source trace. Defaults to None. 565 source_observation_id: Id of the source observation. Defaults to None. 566 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 567 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 568 569 Returns: 570 DatasetItem: The created dataset item as returned by the Langfuse API. 571 572 Example: 573 ```python 574 from langfuse import Langfuse 575 576 langfuse = Langfuse() 577 578 # Uploading items to the Langfuse dataset named "capital_cities" 579 langfuse.create_dataset_item( 580 dataset_name="capital_cities", 581 input={"input": {"country": "Italy"}}, 582 expected_output={"expected_output": "Rome"}, 583 metadata={"foo": "bar"} 584 ) 585 ``` 586 """ 587 try: 588 body = CreateDatasetItemRequest( 589 datasetName=dataset_name, 590 input=input, 591 expectedOutput=expected_output, 592 metadata=metadata, 593 sourceTraceId=source_trace_id, 594 sourceObservationId=source_observation_id, 595 status=status, 596 id=id, 597 ) 598 self.log.debug(f"Creating dataset item {body}") 599 return self.client.dataset_items.create(request=body) 600 except Exception as e: 601 handle_fern_exception(e) 602 raise e 603 604 def fetch_trace( 605 self, 606 id: str, 607 ) -> FetchTraceResponse: 608 """Fetch a trace via the Langfuse API by its id. 609 610 Args: 611 id: The id of the trace to fetch. 612 613 Returns: 614 FetchTraceResponse: The trace with full details as returned by the Langfuse API on `data`. 615 616 Raises: 617 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 618 """ 619 try: 620 self.log.debug(f"Getting trace {id}") 621 trace = self.client.trace.get(id) 622 return FetchTraceResponse(data=trace) 623 except Exception as e: 624 handle_fern_exception(e) 625 raise e 626 627 def get_trace( 628 self, 629 id: str, 630 ) -> TraceWithFullDetails: 631 """Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead. 632 633 Args: 634 id: The id of the trace to fetch. 635 636 Returns: 637 TraceWithFullDetails: The trace with full details as returned by the Langfuse API. 638 639 Raises: 640 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 641 """ 642 warnings.warn( 643 "get_trace is deprecated, use fetch_trace instead.", 644 DeprecationWarning, 645 ) 646 647 try: 648 self.log.debug(f"Getting trace {id}") 649 return self.client.trace.get(id) 650 except Exception as e: 651 handle_fern_exception(e) 652 raise e 653 654 def fetch_traces( 655 self, 656 *, 657 page: Optional[int] = None, 658 limit: Optional[int] = None, 659 user_id: Optional[str] = None, 660 name: Optional[str] = None, 661 session_id: Optional[str] = None, 662 from_timestamp: Optional[dt.datetime] = None, 663 to_timestamp: Optional[dt.datetime] = None, 664 environment: Optional[Union[str, Sequence[str]]] = None, 665 order_by: Optional[str] = None, 666 tags: Optional[Union[str, Sequence[str]]] = None, 667 ) -> FetchTracesResponse: 668 """Fetch a list of traces in the current project matching the given parameters. 669 670 Args: 671 page (Optional[int]): Page number, starts at 1. Defaults to None. 672 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 673 name (Optional[str]): Filter by name of traces. Defaults to None. 674 user_id (Optional[str]): Filter by user_id. Defaults to None. 675 session_id (Optional[str]): Filter by session_id. Defaults to None. 676 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 677 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 678 environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None. 679 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 680 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 681 682 Returns: 683 FetchTracesResponse, list of traces on `data` and metadata on `meta`. 684 685 Raises: 686 Exception: If an error occurred during the request. 687 """ 688 try: 689 self.log.debug( 690 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {environment}, {order_by}, {tags}" 691 ) 692 res = self.client.trace.list( 693 page=page, 694 limit=limit, 695 name=name, 696 user_id=user_id, 697 session_id=session_id, 698 from_timestamp=from_timestamp, 699 to_timestamp=to_timestamp, 700 environment=environment, 701 order_by=order_by, 702 tags=tags, 703 ) 704 return FetchTracesResponse(data=res.data, meta=res.meta) 705 except Exception as e: 706 handle_fern_exception(e) 707 raise e 708 709 def get_traces( 710 self, 711 *, 712 page: Optional[int] = None, 713 limit: Optional[int] = None, 714 user_id: Optional[str] = None, 715 name: Optional[str] = None, 716 session_id: Optional[str] = None, 717 from_timestamp: Optional[dt.datetime] = None, 718 to_timestamp: Optional[dt.datetime] = None, 719 order_by: Optional[str] = None, 720 tags: Optional[Union[str, Sequence[str]]] = None, 721 ) -> Traces: 722 """Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead. 723 724 Args: 725 page (Optional[int]): Page number, starts at 1. Defaults to None. 726 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 727 name (Optional[str]): Filter by name of traces. Defaults to None. 728 user_id (Optional[str]): Filter by user_id. Defaults to None. 729 session_id (Optional[str]): Filter by session_id. Defaults to None. 730 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 731 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 732 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 733 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 734 735 Returns: 736 List of Traces 737 738 Raises: 739 Exception: If an error occurred during the request. 740 """ 741 warnings.warn( 742 "get_traces is deprecated, use fetch_traces instead.", 743 DeprecationWarning, 744 ) 745 try: 746 self.log.debug( 747 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 748 ) 749 return self.client.trace.list( 750 page=page, 751 limit=limit, 752 name=name, 753 user_id=user_id, 754 session_id=session_id, 755 from_timestamp=from_timestamp, 756 to_timestamp=to_timestamp, 757 order_by=order_by, 758 tags=tags, 759 ) 760 except Exception as e: 761 handle_fern_exception(e) 762 raise e 763 764 def fetch_observations( 765 self, 766 *, 767 page: typing.Optional[int] = None, 768 limit: typing.Optional[int] = None, 769 name: typing.Optional[str] = None, 770 user_id: typing.Optional[str] = None, 771 trace_id: typing.Optional[str] = None, 772 parent_observation_id: typing.Optional[str] = None, 773 from_start_time: typing.Optional[dt.datetime] = None, 774 to_start_time: typing.Optional[dt.datetime] = None, 775 environment: Optional[Union[str, Sequence[str]]] = None, 776 type: typing.Optional[str] = None, 777 ) -> FetchObservationsResponse: 778 """Get a list of observations in the current project matching the given parameters. 779 780 Args: 781 page (Optional[int]): Page number of the observations to return. Defaults to None. 782 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 783 name (Optional[str]): Name of the observations to return. Defaults to None. 784 user_id (Optional[str]): User identifier. Defaults to None. 785 trace_id (Optional[str]): Trace identifier. Defaults to None. 786 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 787 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 788 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 789 environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None. 790 type (Optional[str]): Type of the observation. Defaults to None. 791 792 Returns: 793 FetchObservationsResponse, list of observations on `data` and metadata on `meta`. 794 795 Raises: 796 Exception: If an error occurred during the request. 797 """ 798 try: 799 self.log.debug( 800 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {environment}, {type}" 801 ) 802 res = self.client.observations.get_many( 803 page=page, 804 limit=limit, 805 name=name, 806 user_id=user_id, 807 trace_id=trace_id, 808 parent_observation_id=parent_observation_id, 809 from_start_time=from_start_time, 810 to_start_time=to_start_time, 811 environment=environment, 812 type=type, 813 ) 814 return FetchObservationsResponse(data=res.data, meta=res.meta) 815 except Exception as e: 816 self.log.exception(e) 817 raise e 818 819 def get_observations( 820 self, 821 *, 822 page: typing.Optional[int] = None, 823 limit: typing.Optional[int] = None, 824 name: typing.Optional[str] = None, 825 user_id: typing.Optional[str] = None, 826 trace_id: typing.Optional[str] = None, 827 parent_observation_id: typing.Optional[str] = None, 828 from_start_time: typing.Optional[dt.datetime] = None, 829 to_start_time: typing.Optional[dt.datetime] = None, 830 type: typing.Optional[str] = None, 831 ) -> ObservationsViews: 832 """Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead. 833 834 Args: 835 page (Optional[int]): Page number of the observations to return. Defaults to None. 836 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 837 name (Optional[str]): Name of the observations to return. Defaults to None. 838 user_id (Optional[str]): User identifier. Defaults to None. 839 trace_id (Optional[str]): Trace identifier. Defaults to None. 840 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 841 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 842 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 843 type (Optional[str]): Type of the observation. Defaults to None. 844 845 Returns: 846 List of ObservationsViews: List of observations in the project matching the given parameters. 847 848 Raises: 849 Exception: If an error occurred during the request. 850 """ 851 warnings.warn( 852 "get_observations is deprecated, use fetch_observations instead.", 853 DeprecationWarning, 854 ) 855 try: 856 self.log.debug( 857 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 858 ) 859 return self.client.observations.get_many( 860 page=page, 861 limit=limit, 862 name=name, 863 user_id=user_id, 864 trace_id=trace_id, 865 parent_observation_id=parent_observation_id, 866 from_start_time=from_start_time, 867 to_start_time=to_start_time, 868 type=type, 869 ) 870 except Exception as e: 871 handle_fern_exception(e) 872 raise e 873 874 def get_generations( 875 self, 876 *, 877 page: typing.Optional[int] = None, 878 limit: typing.Optional[int] = None, 879 name: typing.Optional[str] = None, 880 user_id: typing.Optional[str] = None, 881 trace_id: typing.Optional[str] = None, 882 from_start_time: typing.Optional[dt.datetime] = None, 883 to_start_time: typing.Optional[dt.datetime] = None, 884 parent_observation_id: typing.Optional[str] = None, 885 ) -> ObservationsViews: 886 """Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead. 887 888 Args: 889 page (Optional[int]): Page number of the generations to return. Defaults to None. 890 limit (Optional[int]): Maximum number of generations to return. Defaults to None. 891 name (Optional[str]): Name of the generations to return. Defaults to None. 892 user_id (Optional[str]): User identifier of the generations to return. Defaults to None. 893 trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None. 894 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 895 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 896 parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None. 897 898 Returns: 899 List of ObservationsViews: List of generations in the project matching the given parameters. 900 901 Raises: 902 Exception: If an error occurred during the request. 903 """ 904 warnings.warn( 905 "get_generations is deprecated, use `fetch_observations(type='GENERATION')` instead.", 906 DeprecationWarning, 907 ) 908 return self.get_observations( 909 page=page, 910 limit=limit, 911 name=name, 912 user_id=user_id, 913 trace_id=trace_id, 914 parent_observation_id=parent_observation_id, 915 from_start_time=from_start_time, 916 to_start_time=to_start_time, 917 type="GENERATION", 918 ) 919 920 def fetch_observation( 921 self, 922 id: str, 923 ) -> FetchObservationResponse: 924 """Get an observation in the current project with the given identifier. 925 926 Args: 927 id: The identifier of the observation to fetch. 928 929 Returns: 930 FetchObservationResponse: The observation with the given id on `data`. 931 932 Raises: 933 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 934 """ 935 try: 936 self.log.debug(f"Getting observation {id}") 937 observation = self.client.observations.get(id) 938 return FetchObservationResponse(data=observation) 939 except Exception as e: 940 handle_fern_exception(e) 941 raise e 942 943 def fetch_media(self, id: str) -> FetchMediaResponse: 944 """Get media content by ID. 945 946 Args: 947 id: The identifier of the media content to fetch. 948 949 Returns: 950 FetchMediaResponse: The media data of the given id on `data`. 951 952 Raises: 953 Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request. 954 """ 955 try: 956 return FetchMediaResponse(data=self.client.media.get(id)) 957 except Exception as e: 958 handle_fern_exception(e) 959 raise e 960 961 def resolve_media_references( 962 self, 963 *, 964 obj: Any, 965 resolve_with: Literal["base64_data_uri"], 966 max_depth: int = 10, 967 content_fetch_timeout_seconds: int = 10, 968 ): 969 """Replace media reference strings in an object with base64 data URIs. 970 971 This method recursively traverses an object (up to max_depth) looking for media reference strings 972 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 973 the provided Langfuse client and replaces the reference string with a base64 data URI. 974 975 If fetching media content fails for a reference string, a warning is logged and the reference 976 string is left unchanged. 977 978 Args: 979 obj: The object to process. Can be a primitive value, array, or nested object. 980 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 981 resolve_with: The representation of the media content to replace the media reference string with. 982 Currently only "base64_data_uri" is supported. 983 max_depth: int: The maximum depth to traverse the object. Default is 10. 984 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10. 985 986 Returns: 987 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 988 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 989 990 Example: 991 obj = { 992 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 993 "nested": { 994 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 995 } 996 } 997 998 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 999 1000 # Result: 1001 # { 1002 # "image": "...", 1003 # "nested": { 1004 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 1005 # } 1006 # } 1007 """ 1008 return LangfuseMedia.resolve_media_references( 1009 langfuse_client=self, 1010 obj=obj, 1011 resolve_with=resolve_with, 1012 max_depth=max_depth, 1013 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 1014 ) 1015 1016 def get_observation( 1017 self, 1018 id: str, 1019 ) -> Observation: 1020 """Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead. 1021 1022 Args: 1023 id: The identifier of the observation to fetch. 1024 1025 Raises: 1026 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 1027 """ 1028 warnings.warn( 1029 "get_observation is deprecated, use fetch_observation instead.", 1030 DeprecationWarning, 1031 ) 1032 try: 1033 self.log.debug(f"Getting observation {id}") 1034 return self.client.observations.get(id) 1035 except Exception as e: 1036 handle_fern_exception(e) 1037 raise e 1038 1039 def fetch_sessions( 1040 self, 1041 *, 1042 page: typing.Optional[int] = None, 1043 limit: typing.Optional[int] = None, 1044 from_timestamp: typing.Optional[dt.datetime] = None, 1045 to_timestamp: typing.Optional[dt.datetime] = None, 1046 ) -> FetchSessionsResponse: 1047 """Get a list of sessions in the current project. 1048 1049 Args: 1050 page (Optional[int]): Page number of the sessions to return. Defaults to None. 1051 limit (Optional[int]): Maximum number of sessions to return. Defaults to None. 1052 from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None. 1053 to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None. 1054 1055 Returns: 1056 FetchSessionsResponse, list of sessions on `data` and metadata on `meta`. 1057 1058 Raises: 1059 Exception: If an error occurred during the request. 1060 """ 1061 try: 1062 self.log.debug( 1063 f"Getting sessions... {page}, {limit}, {from_timestamp}, {to_timestamp}" 1064 ) 1065 res = self.client.sessions.list( 1066 page=page, 1067 limit=limit, 1068 from_timestamp=from_timestamp, 1069 to_timestamp=to_timestamp, 1070 ) 1071 return FetchSessionsResponse(data=res.data, meta=res.meta) 1072 except Exception as e: 1073 handle_fern_exception(e) 1074 raise e 1075 1076 @overload 1077 def get_prompt( 1078 self, 1079 name: str, 1080 version: Optional[int] = None, 1081 *, 1082 label: Optional[str] = None, 1083 type: Literal["chat"], 1084 cache_ttl_seconds: Optional[int] = None, 1085 fallback: Optional[List[ChatMessageDict]] = None, 1086 max_retries: Optional[int] = None, 1087 fetch_timeout_seconds: Optional[int] = None, 1088 ) -> ChatPromptClient: ... 1089 1090 @overload 1091 def get_prompt( 1092 self, 1093 name: str, 1094 version: Optional[int] = None, 1095 *, 1096 label: Optional[str] = None, 1097 type: Literal["text"] = "text", 1098 cache_ttl_seconds: Optional[int] = None, 1099 fallback: Optional[str] = None, 1100 max_retries: Optional[int] = None, 1101 fetch_timeout_seconds: Optional[int] = None, 1102 ) -> TextPromptClient: ... 1103 1104 def get_prompt( 1105 self, 1106 name: str, 1107 version: Optional[int] = None, 1108 *, 1109 label: Optional[str] = None, 1110 type: Literal["chat", "text"] = "text", 1111 cache_ttl_seconds: Optional[int] = None, 1112 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 1113 max_retries: Optional[int] = None, 1114 fetch_timeout_seconds: Optional[int] = None, 1115 ) -> PromptClient: 1116 """Get a prompt. 1117 1118 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 1119 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 1120 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 1121 return the expired prompt as a fallback. 1122 1123 Args: 1124 name (str): The name of the prompt to retrieve. 1125 1126 Keyword Args: 1127 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1128 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1129 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 1130 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 1131 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 1132 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 1133 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 1134 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default. 1135 1136 Returns: 1137 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 1138 - TextPromptClient, if type argument is 'text'. 1139 - ChatPromptClient, if type argument is 'chat'. 1140 1141 Raises: 1142 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 1143 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 1144 """ 1145 if version is not None and label is not None: 1146 raise ValueError("Cannot specify both version and label at the same time.") 1147 1148 if not name: 1149 raise ValueError("Prompt name cannot be empty.") 1150 1151 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 1152 bounded_max_retries = self._get_bounded_max_retries( 1153 max_retries, default_max_retries=2, max_retries_upper_bound=4 1154 ) 1155 1156 self.log.debug(f"Getting prompt '{cache_key}'") 1157 cached_prompt = self.prompt_cache.get(cache_key) 1158 1159 if cached_prompt is None or cache_ttl_seconds == 0: 1160 self.log.debug( 1161 f"Prompt '{cache_key}' not found in cache or caching disabled." 1162 ) 1163 try: 1164 return self._fetch_prompt_and_update_cache( 1165 name, 1166 version=version, 1167 label=label, 1168 ttl_seconds=cache_ttl_seconds, 1169 max_retries=bounded_max_retries, 1170 fetch_timeout_seconds=fetch_timeout_seconds, 1171 ) 1172 except Exception as e: 1173 if fallback: 1174 self.log.warning( 1175 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 1176 ) 1177 1178 fallback_client_args = { 1179 "name": name, 1180 "prompt": fallback, 1181 "type": type, 1182 "version": version or 0, 1183 "config": {}, 1184 "labels": [label] if label else [], 1185 "tags": [], 1186 } 1187 1188 if type == "text": 1189 return TextPromptClient( 1190 prompt=Prompt_Text(**fallback_client_args), 1191 is_fallback=True, 1192 ) 1193 1194 if type == "chat": 1195 return ChatPromptClient( 1196 prompt=Prompt_Chat(**fallback_client_args), 1197 is_fallback=True, 1198 ) 1199 1200 raise e 1201 1202 if cached_prompt.is_expired(): 1203 self.log.debug(f"Stale prompt '{cache_key}' found in cache.") 1204 try: 1205 # refresh prompt in background thread, refresh_prompt deduplicates tasks 1206 self.log.debug(f"Refreshing prompt '{cache_key}' in background.") 1207 self.prompt_cache.add_refresh_prompt_task( 1208 cache_key, 1209 lambda: self._fetch_prompt_and_update_cache( 1210 name, 1211 version=version, 1212 label=label, 1213 ttl_seconds=cache_ttl_seconds, 1214 max_retries=bounded_max_retries, 1215 fetch_timeout_seconds=fetch_timeout_seconds, 1216 ), 1217 ) 1218 self.log.debug(f"Returning stale prompt '{cache_key}' from cache.") 1219 # return stale prompt 1220 return cached_prompt.value 1221 1222 except Exception as e: 1223 self.log.warning( 1224 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 1225 ) 1226 # creation of refresh prompt task failed, return stale prompt 1227 return cached_prompt.value 1228 1229 return cached_prompt.value 1230 1231 def _fetch_prompt_and_update_cache( 1232 self, 1233 name: str, 1234 *, 1235 version: Optional[int] = None, 1236 label: Optional[str] = None, 1237 ttl_seconds: Optional[int] = None, 1238 max_retries: int, 1239 fetch_timeout_seconds, 1240 ) -> PromptClient: 1241 try: 1242 cache_key = PromptCache.generate_cache_key( 1243 name, version=version, label=label 1244 ) 1245 1246 self.log.debug(f"Fetching prompt '{cache_key}' from server...") 1247 1248 @backoff.on_exception( 1249 backoff.constant, Exception, max_tries=max_retries, logger=None 1250 ) 1251 def fetch_prompts(): 1252 return self.client.prompts.get( 1253 self._url_encode(name), 1254 version=version, 1255 label=label, 1256 request_options={ 1257 "timeout_in_seconds": fetch_timeout_seconds, 1258 } 1259 if fetch_timeout_seconds is not None 1260 else None, 1261 ) 1262 1263 prompt_response = fetch_prompts() 1264 1265 if prompt_response.type == "chat": 1266 prompt = ChatPromptClient(prompt_response) 1267 else: 1268 prompt = TextPromptClient(prompt_response) 1269 1270 self.prompt_cache.set(cache_key, prompt, ttl_seconds) 1271 1272 return prompt 1273 1274 except Exception as e: 1275 self.log.error(f"Error while fetching prompt '{cache_key}': {str(e)}") 1276 raise e 1277 1278 def _get_bounded_max_retries( 1279 self, 1280 max_retries: Optional[int], 1281 *, 1282 default_max_retries: int = 2, 1283 max_retries_upper_bound: int = 4, 1284 ) -> int: 1285 if max_retries is None: 1286 return default_max_retries 1287 1288 bounded_max_retries = min( 1289 max(max_retries, 0), 1290 max_retries_upper_bound, 1291 ) 1292 1293 return bounded_max_retries 1294 1295 @overload 1296 def create_prompt( 1297 self, 1298 *, 1299 name: str, 1300 prompt: List[ChatMessageDict], 1301 is_active: Optional[bool] = None, # deprecated 1302 labels: List[str] = [], 1303 tags: Optional[List[str]] = None, 1304 type: Optional[Literal["chat"]], 1305 config: Optional[Any] = None, 1306 commit_message: Optional[str] = None, 1307 ) -> ChatPromptClient: ... 1308 1309 @overload 1310 def create_prompt( 1311 self, 1312 *, 1313 name: str, 1314 prompt: str, 1315 is_active: Optional[bool] = None, # deprecated 1316 labels: List[str] = [], 1317 tags: Optional[List[str]] = None, 1318 type: Optional[Literal["text"]] = "text", 1319 config: Optional[Any] = None, 1320 commit_message: Optional[str] = None, 1321 ) -> TextPromptClient: ... 1322 1323 def create_prompt( 1324 self, 1325 *, 1326 name: str, 1327 prompt: Union[str, List[ChatMessageDict]], 1328 is_active: Optional[bool] = None, # deprecated 1329 labels: List[str] = [], 1330 tags: Optional[List[str]] = None, 1331 type: Optional[Literal["chat", "text"]] = "text", 1332 config: Optional[Any] = None, 1333 commit_message: Optional[str] = None, 1334 ) -> PromptClient: 1335 """Create a new prompt in Langfuse. 1336 1337 Keyword Args: 1338 name : The name of the prompt to be created. 1339 prompt : The content of the prompt to be created. 1340 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 1341 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 1342 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 1343 config: Additional structured data to be saved with the prompt. Defaults to None. 1344 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 1345 commit_message: Optional string describing the change. 1346 1347 Returns: 1348 TextPromptClient: The prompt if type argument is 'text'. 1349 ChatPromptClient: The prompt if type argument is 'chat'. 1350 """ 1351 try: 1352 self.log.debug(f"Creating prompt {name=}, {version=}, {labels=}") 1353 1354 # Handle deprecated is_active flag 1355 if is_active: 1356 self.log.warning( 1357 "The 'is_active' flag is deprecated and will be removed in a future release. Please use the 'production' label instead." 1358 ) 1359 1360 labels = labels if "production" in labels else labels + ["production"] 1361 1362 if type == "chat": 1363 if not isinstance(prompt, list): 1364 raise ValueError( 1365 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 1366 ) 1367 request = CreatePromptRequest_Chat( 1368 name=name, 1369 prompt=prompt, 1370 labels=labels, 1371 tags=tags, 1372 config=config or {}, 1373 commitMessage=commit_message, 1374 type="chat", 1375 ) 1376 server_prompt = self.client.prompts.create(request=request) 1377 1378 return ChatPromptClient(prompt=server_prompt) 1379 1380 if not isinstance(prompt, str): 1381 raise ValueError("For 'text' type, 'prompt' must be a string.") 1382 1383 request = CreatePromptRequest_Text( 1384 name=name, 1385 prompt=prompt, 1386 labels=labels, 1387 tags=tags, 1388 config=config or {}, 1389 commitMessage=commit_message, 1390 type="text", 1391 ) 1392 1393 server_prompt = self.client.prompts.create(request=request) 1394 return TextPromptClient(prompt=server_prompt) 1395 1396 except Exception as e: 1397 handle_fern_exception(e) 1398 raise e 1399 1400 def update_prompt( 1401 self, 1402 *, 1403 name: str, 1404 version: int, 1405 new_labels: List[str] = [], 1406 ): 1407 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 1408 1409 Args: 1410 name (str): The name of the prompt to update. 1411 version (int): The version number of the prompt to update. 1412 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 1413 1414 Returns: 1415 Prompt: The updated prompt from the Langfuse API. 1416 1417 """ 1418 updated_prompt = self.client.prompt_version.update( 1419 name=name, 1420 version=version, 1421 new_labels=new_labels, 1422 ) 1423 self.prompt_cache.invalidate(name) 1424 return updated_prompt 1425 1426 def _url_encode(self, url: str) -> str: 1427 return urllib.parse.quote(url) 1428 1429 def trace( 1430 self, 1431 *, 1432 id: typing.Optional[str] = None, 1433 name: typing.Optional[str] = None, 1434 user_id: typing.Optional[str] = None, 1435 session_id: typing.Optional[str] = None, 1436 version: typing.Optional[str] = None, 1437 input: typing.Optional[typing.Any] = None, 1438 output: typing.Optional[typing.Any] = None, 1439 metadata: typing.Optional[typing.Any] = None, 1440 tags: typing.Optional[typing.List[str]] = None, 1441 timestamp: typing.Optional[dt.datetime] = None, 1442 public: typing.Optional[bool] = None, 1443 **kwargs, 1444 ) -> "StatefulTraceClient": 1445 """Create a trace. 1446 1447 Args: 1448 id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id. 1449 name: Identifier of the trace. Useful for sorting/filtering in the UI. 1450 input: The input of the trace. Can be any JSON object. 1451 output: The output of the trace. Can be any JSON object. 1452 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 1453 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 1454 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 1455 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 1456 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 1457 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 1458 timestamp: The timestamp of the trace. Defaults to the current time if not provided. 1459 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 1460 **kwargs: Additional keyword arguments that can be included in the trace. 1461 1462 Returns: 1463 StatefulTraceClient: The created trace. 1464 1465 Example: 1466 ```python 1467 from langfuse import Langfuse 1468 1469 langfuse = Langfuse() 1470 1471 trace = langfuse.trace( 1472 name="example-application", 1473 user_id="user-1234") 1474 ) 1475 ``` 1476 """ 1477 new_id = id or str(uuid.uuid4()) 1478 self.trace_id = new_id 1479 try: 1480 new_dict = { 1481 "id": new_id, 1482 "name": name, 1483 "userId": user_id, 1484 "sessionId": session_id 1485 or kwargs.get("sessionId", None), # backward compatibility 1486 "release": self.release, 1487 "version": version, 1488 "metadata": metadata, 1489 "input": input, 1490 "output": output, 1491 "tags": tags, 1492 "timestamp": timestamp or _get_timestamp(), 1493 "public": public, 1494 "environment": self.environment, 1495 } 1496 if kwargs is not None: 1497 new_dict.update(kwargs) 1498 1499 new_body = TraceBody(**new_dict) 1500 1501 self.log.debug(f"Creating trace {_filter_io_from_event_body(new_dict)}") 1502 event = { 1503 "id": str(uuid.uuid4()), 1504 "type": "trace-create", 1505 "body": new_body, 1506 } 1507 1508 self.task_manager.add_task( 1509 event, 1510 ) 1511 1512 except Exception as e: 1513 self.log.exception(e) 1514 finally: 1515 self._log_memory_usage() 1516 1517 return StatefulTraceClient( 1518 self.client, 1519 new_id, 1520 StateType.TRACE, 1521 new_id, 1522 self.task_manager, 1523 self.environment, 1524 ) 1525 1526 def _log_memory_usage(self): 1527 try: 1528 is_malloc_tracing_enabled = bool(int(os.getenv("PYTHONTRACEMALLOC", 0))) 1529 report_interval = int(os.getenv("LANGFUSE_DEBUG_MEMORY_REPORT_INTERVAL", 0)) 1530 top_k_items = int(os.getenv("LANGFUSE_DEBUG_MEMORY_TOP_K", 10)) 1531 1532 if ( 1533 not is_malloc_tracing_enabled 1534 or report_interval <= 0 1535 or round(time.monotonic()) % report_interval != 0 1536 ): 1537 return 1538 1539 snapshot = tracemalloc.take_snapshot().statistics("lineno") 1540 1541 total_memory_usage = sum([stat.size for stat in snapshot]) / 1024 / 1024 1542 memory_usage_total_items = [f"{stat}" for stat in snapshot] 1543 memory_usage_langfuse_items = [ 1544 stat for stat in memory_usage_total_items if "/langfuse/" in stat 1545 ] 1546 1547 logged_memory_usage = { 1548 "all_files": [f"{stat}" for stat in memory_usage_total_items][ 1549 :top_k_items 1550 ], 1551 "langfuse_files": [f"{stat}" for stat in memory_usage_langfuse_items][ 1552 :top_k_items 1553 ], 1554 "total_usage": f"{total_memory_usage:.2f} MB", 1555 "langfuse_queue_length": self.task_manager._ingestion_queue.qsize(), 1556 } 1557 1558 self.log.debug("Memory usage: ", logged_memory_usage) 1559 1560 event = SdkLogBody(log=logged_memory_usage) 1561 self.task_manager.add_task( 1562 { 1563 "id": str(uuid.uuid4()), 1564 "type": "sdk-log", 1565 "timestamp": _get_timestamp(), 1566 "body": event.dict(), 1567 } 1568 ) 1569 1570 except Exception as e: 1571 self.log.exception(e) 1572 1573 @overload 1574 def score( 1575 self, 1576 *, 1577 name: str, 1578 value: float, 1579 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 1580 trace_id: typing.Optional[str] = None, 1581 id: typing.Optional[str] = None, 1582 comment: typing.Optional[str] = None, 1583 observation_id: typing.Optional[str] = None, 1584 config_id: typing.Optional[str] = None, 1585 **kwargs, 1586 ) -> "StatefulClient": ... 1587 1588 @overload 1589 def score( 1590 self, 1591 *, 1592 name: str, 1593 value: str, 1594 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 1595 trace_id: typing.Optional[str] = None, 1596 id: typing.Optional[str] = None, 1597 comment: typing.Optional[str] = None, 1598 observation_id: typing.Optional[str] = None, 1599 config_id: typing.Optional[str] = None, 1600 **kwargs, 1601 ) -> "StatefulClient": ... 1602 1603 def score( 1604 self, 1605 *, 1606 name: str, 1607 value: typing.Union[float, str], 1608 data_type: typing.Optional[ScoreDataType] = None, 1609 trace_id: typing.Optional[str] = None, 1610 id: typing.Optional[str] = None, 1611 comment: typing.Optional[str] = None, 1612 observation_id: typing.Optional[str] = None, 1613 config_id: typing.Optional[str] = None, 1614 **kwargs, 1615 ) -> "StatefulClient": 1616 """Create a score attached to a trace (and optionally an observation). 1617 1618 Args: 1619 name (str): Identifier of the score. 1620 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 1621 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 1622 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 1623 trace_id (str): The id of the trace to which the score should be attached. 1624 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 1625 comment (Optional[str]): Additional context/explanation of the score. 1626 observation_id (Optional[str]): The id of the observation to which the score should be attached. 1627 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 1628 **kwargs: Additional keyword arguments to include in the score. 1629 1630 Returns: 1631 StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided). 1632 1633 Example: 1634 ```python 1635 from langfuse import Langfuse 1636 1637 langfuse = Langfuse() 1638 1639 # Create a trace 1640 trace = langfuse.trace(name="example-application") 1641 1642 # Get id of created trace 1643 trace_id = trace.id 1644 1645 # Add score to the trace 1646 trace = langfuse.score( 1647 trace_id=trace_id, 1648 name="user-explicit-feedback", 1649 value=0.9, 1650 comment="I like how personalized the response is" 1651 ) 1652 ``` 1653 """ 1654 trace_id = trace_id or self.trace_id or str(uuid.uuid4()) 1655 new_id = id or str(uuid.uuid4()) 1656 try: 1657 new_dict = { 1658 "id": new_id, 1659 "trace_id": trace_id, 1660 "observation_id": observation_id, 1661 "name": name, 1662 "value": value, 1663 "data_type": data_type, 1664 "comment": comment, 1665 "config_id": config_id, 1666 "environment": self.environment, 1667 **kwargs, 1668 } 1669 1670 self.log.debug(f"Creating score {new_dict}...") 1671 new_body = ScoreBody(**new_dict) 1672 1673 event = { 1674 "id": str(uuid.uuid4()), 1675 "type": "score-create", 1676 "body": new_body, 1677 } 1678 self.task_manager.add_task(event) 1679 1680 except Exception as e: 1681 self.log.exception(e) 1682 finally: 1683 if observation_id is not None: 1684 return StatefulClient( 1685 self.client, 1686 observation_id, 1687 StateType.OBSERVATION, 1688 trace_id, 1689 self.task_manager, 1690 self.environment, 1691 ) 1692 else: 1693 return StatefulClient( 1694 self.client, 1695 new_id, 1696 StateType.TRACE, 1697 new_id, 1698 self.task_manager, 1699 self.environment, 1700 ) 1701 1702 def span( 1703 self, 1704 *, 1705 id: typing.Optional[str] = None, 1706 trace_id: typing.Optional[str] = None, 1707 parent_observation_id: typing.Optional[str] = None, 1708 name: typing.Optional[str] = None, 1709 start_time: typing.Optional[dt.datetime] = None, 1710 end_time: typing.Optional[dt.datetime] = None, 1711 metadata: typing.Optional[typing.Any] = None, 1712 level: typing.Optional[SpanLevel] = None, 1713 status_message: typing.Optional[str] = None, 1714 input: typing.Optional[typing.Any] = None, 1715 output: typing.Optional[typing.Any] = None, 1716 version: typing.Optional[str] = None, 1717 **kwargs, 1718 ) -> "StatefulSpanClient": 1719 """Create a span. 1720 1721 A span represents durations of units of work in a trace. 1722 Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1723 1724 If no trace_id is provided, a new trace is created just for this span. 1725 1726 Args: 1727 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 1728 trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated. 1729 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1730 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 1731 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 1732 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 1733 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 1734 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1735 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 1736 input (Optional[dict]): The input to the span. Can be any JSON object. 1737 output (Optional[dict]): The output to the span. Can be any JSON object. 1738 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1739 **kwargs: Additional keyword arguments to include in the span. 1740 1741 Returns: 1742 StatefulSpanClient: The created span. 1743 1744 Example: 1745 ```python 1746 from langfuse import Langfuse 1747 1748 langfuse = Langfuse() 1749 1750 trace = langfuse.trace(name = "llm-feature") 1751 1752 # Create a span 1753 retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) 1754 1755 # Create a nested span 1756 nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id) 1757 ``` 1758 """ 1759 new_span_id = id or str(uuid.uuid4()) 1760 new_trace_id = trace_id or str(uuid.uuid4()) 1761 self.trace_id = new_trace_id 1762 try: 1763 span_body = { 1764 "id": new_span_id, 1765 "trace_id": new_trace_id, 1766 "name": name, 1767 "start_time": start_time or _get_timestamp(), 1768 "metadata": metadata, 1769 "input": input, 1770 "output": output, 1771 "level": level, 1772 "status_message": status_message, 1773 "parent_observation_id": parent_observation_id, 1774 "version": version, 1775 "end_time": end_time, 1776 "trace": {"release": self.release}, 1777 "environment": self.environment, 1778 **kwargs, 1779 } 1780 1781 if trace_id is None: 1782 self._generate_trace(new_trace_id, name or new_trace_id) 1783 1784 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 1785 1786 span_body = CreateSpanBody(**span_body) 1787 1788 event = { 1789 "id": str(uuid.uuid4()), 1790 "type": "span-create", 1791 "body": span_body, 1792 } 1793 1794 self.task_manager.add_task(event) 1795 1796 except Exception as e: 1797 self.log.exception(e) 1798 finally: 1799 self._log_memory_usage() 1800 1801 return StatefulSpanClient( 1802 self.client, 1803 new_span_id, 1804 StateType.OBSERVATION, 1805 new_trace_id, 1806 self.task_manager, 1807 self.environment, 1808 ) 1809 1810 def event( 1811 self, 1812 *, 1813 id: typing.Optional[str] = None, 1814 trace_id: typing.Optional[str] = None, 1815 parent_observation_id: typing.Optional[str] = None, 1816 name: typing.Optional[str] = None, 1817 start_time: typing.Optional[dt.datetime] = None, 1818 metadata: typing.Optional[typing.Any] = None, 1819 input: typing.Optional[typing.Any] = None, 1820 output: typing.Optional[typing.Any] = None, 1821 level: typing.Optional[SpanLevel] = None, 1822 status_message: typing.Optional[str] = None, 1823 version: typing.Optional[str] = None, 1824 **kwargs, 1825 ) -> "StatefulSpanClient": 1826 """Create an event. 1827 1828 An event represents a discrete event in a trace. 1829 Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1830 1831 If no trace_id is provided, a new trace is created just for this event. 1832 1833 Args: 1834 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 1835 trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event. 1836 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1837 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 1838 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 1839 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 1840 input (Optional[Any]): The input to the event. Can be any JSON object. 1841 output (Optional[Any]): The output to the event. Can be any JSON object. 1842 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1843 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 1844 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 1845 **kwargs: Additional keyword arguments to include in the event. 1846 1847 Returns: 1848 StatefulSpanClient: The created event. 1849 1850 Example: 1851 ```python 1852 from langfuse import Langfuse 1853 1854 langfuse = Langfuse() 1855 1856 trace = langfuse.trace(name = "llm-feature") 1857 1858 # Create an event 1859 retrieval = langfuse.event(name = "retrieval", trace_id = trace.id) 1860 ``` 1861 """ 1862 event_id = id or str(uuid.uuid4()) 1863 new_trace_id = trace_id or str(uuid.uuid4()) 1864 self.trace_id = new_trace_id 1865 try: 1866 event_body = { 1867 "id": event_id, 1868 "trace_id": new_trace_id, 1869 "name": name, 1870 "start_time": start_time or _get_timestamp(), 1871 "metadata": metadata, 1872 "input": input, 1873 "output": output, 1874 "level": level, 1875 "status_message": status_message, 1876 "parent_observation_id": parent_observation_id, 1877 "version": version, 1878 "trace": {"release": self.release}, 1879 "environment": self.environment, 1880 **kwargs, 1881 } 1882 1883 if trace_id is None: 1884 self._generate_trace(new_trace_id, name or new_trace_id) 1885 1886 request = CreateEventBody(**event_body) 1887 1888 event = { 1889 "id": str(uuid.uuid4()), 1890 "type": "event-create", 1891 "body": request, 1892 } 1893 1894 self.log.debug( 1895 f"Creating event {_filter_io_from_event_body(event_body)} ..." 1896 ) 1897 self.task_manager.add_task(event) 1898 1899 except Exception as e: 1900 self.log.exception(e) 1901 finally: 1902 return StatefulSpanClient( 1903 self.client, 1904 event_id, 1905 StateType.OBSERVATION, 1906 new_trace_id, 1907 self.task_manager, 1908 self.environment, 1909 ) 1910 1911 def generation( 1912 self, 1913 *, 1914 id: typing.Optional[str] = None, 1915 trace_id: typing.Optional[str] = None, 1916 parent_observation_id: typing.Optional[str] = None, 1917 name: typing.Optional[str] = None, 1918 start_time: typing.Optional[dt.datetime] = None, 1919 end_time: typing.Optional[dt.datetime] = None, 1920 completion_start_time: typing.Optional[dt.datetime] = None, 1921 metadata: typing.Optional[typing.Any] = None, 1922 level: typing.Optional[SpanLevel] = None, 1923 status_message: typing.Optional[str] = None, 1924 version: typing.Optional[str] = None, 1925 model: typing.Optional[str] = None, 1926 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 1927 input: typing.Optional[typing.Any] = None, 1928 output: typing.Optional[typing.Any] = None, 1929 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 1930 usage_details: typing.Optional[typing.Dict[str, int]] = None, 1931 cost_details: typing.Optional[typing.Dict[str, float]] = None, 1932 prompt: typing.Optional[PromptClient] = None, 1933 **kwargs, 1934 ) -> "StatefulGenerationClient": 1935 """Create a generation. 1936 1937 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 1938 1939 Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1940 1941 If no trace_id is provided, a new trace is created just for this generation. 1942 1943 Args: 1944 id (Optional[str]): The id of the generation can be set, defaults to random id. 1945 trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created 1946 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1947 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 1948 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 1949 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 1950 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 1951 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 1952 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1953 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 1954 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1955 model (Optional[str]): The name of the model used for the generation. 1956 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 1957 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 1958 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 1959 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 1960 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 1961 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 1962 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 1963 **kwargs: Additional keyword arguments to include in the generation. 1964 1965 Returns: 1966 StatefulGenerationClient: The created generation. 1967 1968 Example: 1969 ```python 1970 from langfuse import Langfuse 1971 1972 langfuse = Langfuse() 1973 1974 # Create a generation in Langfuse 1975 generation = langfuse.generation( 1976 name="summary-generation", 1977 model="gpt-3.5-turbo", 1978 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 1979 input=[{"role": "system", "content": "You are a helpful assistant."}, 1980 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 1981 metadata={"interface": "whatsapp"} 1982 ) 1983 ``` 1984 """ 1985 new_trace_id = trace_id or str(uuid.uuid4()) 1986 new_generation_id = id or str(uuid.uuid4()) 1987 self.trace_id = new_trace_id 1988 try: 1989 generation_body = { 1990 "id": new_generation_id, 1991 "trace_id": new_trace_id, 1992 "release": self.release, 1993 "name": name, 1994 "start_time": start_time or _get_timestamp(), 1995 "metadata": metadata, 1996 "input": input, 1997 "output": output, 1998 "level": level, 1999 "status_message": status_message, 2000 "parent_observation_id": parent_observation_id, 2001 "version": version, 2002 "end_time": end_time, 2003 "completion_start_time": completion_start_time, 2004 "model": model, 2005 "model_parameters": model_parameters, 2006 "usage": _convert_usage_input(usage) if usage is not None else None, 2007 "usage_details": usage_details, 2008 "cost_details": cost_details, 2009 "trace": {"release": self.release}, 2010 "environment": self.environment, 2011 **_create_prompt_context(prompt), 2012 **kwargs, 2013 } 2014 2015 if trace_id is None: 2016 trace = { 2017 "id": new_trace_id, 2018 "release": self.release, 2019 "name": name, 2020 "environment": self.environment, 2021 } 2022 request = TraceBody(**trace) 2023 2024 event = { 2025 "id": str(uuid.uuid4()), 2026 "type": "trace-create", 2027 "body": request, 2028 } 2029 2030 self.log.debug("Creating trace...") 2031 2032 self.task_manager.add_task(event) 2033 2034 self.log.debug( 2035 f"Creating generation max {_filter_io_from_event_body(generation_body)}..." 2036 ) 2037 request = CreateGenerationBody(**generation_body) 2038 2039 event = { 2040 "id": str(uuid.uuid4()), 2041 "type": "generation-create", 2042 "body": request, 2043 } 2044 2045 self.task_manager.add_task(event) 2046 2047 except Exception as e: 2048 self.log.exception(e) 2049 finally: 2050 return StatefulGenerationClient( 2051 self.client, 2052 new_generation_id, 2053 StateType.OBSERVATION, 2054 new_trace_id, 2055 self.task_manager, 2056 self.environment, 2057 ) 2058 2059 def _generate_trace(self, trace_id: str, name: str): 2060 trace_dict = { 2061 "id": trace_id, 2062 "release": self.release, 2063 "name": name, 2064 "environment": self.environment, 2065 } 2066 2067 trace_body = TraceBody(**trace_dict) 2068 2069 event = { 2070 "id": str(uuid.uuid4()), 2071 "type": "trace-create", 2072 "body": trace_body, 2073 } 2074 2075 self.log.debug(f"Creating trace {_filter_io_from_event_body(trace_dict)}...") 2076 self.task_manager.add_task(event) 2077 2078 def join(self): 2079 """Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter. 2080 2081 If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. 2082 To guarantee all messages have been delivered, you still need to call flush(). 2083 """ 2084 try: 2085 return self.task_manager.join() 2086 except Exception as e: 2087 self.log.exception(e) 2088 2089 def flush(self): 2090 """Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down. 2091 2092 Example: 2093 ```python 2094 from langfuse import Langfuse 2095 2096 langfuse = Langfuse() 2097 2098 # Some operations with Langfuse 2099 2100 # Flushing all events to end Langfuse cleanly 2101 langfuse.flush() 2102 ``` 2103 """ 2104 try: 2105 return self.task_manager.flush() 2106 except Exception as e: 2107 self.log.exception(e) 2108 2109 def shutdown(self): 2110 """Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated. 2111 2112 This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. 2113 As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API. 2114 """ 2115 try: 2116 self.prompt_cache._task_manager.shutdown() 2117 2118 # In logging.py, a handler is attached to the httpx logger. 2119 # To avoid a memory leak on singleton reset, remove all handlers 2120 httpx_logger = logging.getLogger("httpx") 2121 for handler in httpx_logger.handlers: 2122 httpx_logger.removeHandler(handler) 2123 2124 return self.task_manager.shutdown() 2125 except Exception as e: 2126 self.log.exception(e)
Langfuse Python client.
Attributes:
- log (logging.Logger): Logger for the Langfuse client.
- base_url (str): Base URL of the Langfuse API, serving as the root address for API endpoint construction.
- httpx_client (httpx.Client): HTTPX client utilized for executing requests to the Langfuse API.
- client (FernLangfuse): Core interface for Langfuse API interaction.
- task_manager (TaskManager): Task Manager dedicated to handling asynchronous tasks.
- release (str): Identifies the release number or hash of the application.
- prompt_cache (PromptCache): A cache for efficiently storing and retrieving PromptClient instances.
Example:
Initiating the Langfuse client should always be first step to use Langfuse.
import os from langfuse import Langfuse # Set the public and secret keys as environment variables os.environ['LANGFUSE_PUBLIC_KEY'] = public_key os.environ['LANGFUSE_SECRET_KEY'] = secret_key # Initialize the Langfuse client using the credentials langfuse = Langfuse()
175 def __init__( 176 self, 177 public_key: Optional[str] = None, 178 secret_key: Optional[str] = None, 179 host: Optional[str] = None, 180 release: Optional[str] = None, 181 debug: bool = False, 182 threads: Optional[int] = None, 183 flush_at: Optional[int] = None, 184 flush_interval: Optional[float] = None, 185 max_retries: Optional[int] = None, 186 timeout: Optional[int] = None, # seconds 187 sdk_integration: Optional[str] = "default", 188 httpx_client: Optional[httpx.Client] = None, 189 enabled: Optional[bool] = True, 190 sample_rate: Optional[float] = None, 191 mask: Optional[MaskFunction] = None, 192 environment: Optional[str] = None, 193 ): 194 """Initialize the Langfuse client. 195 196 Args: 197 public_key: Public API key of Langfuse project. Can be set via `LANGFUSE_PUBLIC_KEY` environment variable. 198 secret_key: Secret API key of Langfuse project. Can be set via `LANGFUSE_SECRET_KEY` environment variable. 199 host: Host of Langfuse API. Can be set via `LANGFUSE_HOST` environment variable. Defaults to `https://cloud.langfuse.com`. 200 release: Release number/hash of the application to provide analytics grouped by release. Can be set via `LANGFUSE_RELEASE` environment variable. 201 debug: Enables debug mode for more verbose logging. Can be set via `LANGFUSE_DEBUG` environment variable. 202 threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues. 203 flush_at: Max batch size that's sent to the API. 204 flush_interval: Max delay until a new batch is sent to the API. 205 max_retries: Max number of retries in case of API/network errors. 206 timeout: Timeout of API requests in seconds. Defaults to 20 seconds. 207 httpx_client: Pass your own httpx client for more customizability of requests. 208 sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly. 209 enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops. 210 sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via `LANGFUSE_SAMPLE_RATE` environment variable. 211 mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument `data` and return a serializable, masked version of the data. 212 environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via `LANGFUSE_TRACING_ENVIRONMENT` environment variable. 213 214 Raises: 215 ValueError: If public_key or secret_key are not set and not found in environment variables. 216 217 Example: 218 Initiating the Langfuse client should always be first step to use Langfuse. 219 ```python 220 import os 221 from langfuse import Langfuse 222 223 # Set the public and secret keys as environment variables 224 os.environ['LANGFUSE_PUBLIC_KEY'] = public_key 225 os.environ['LANGFUSE_SECRET_KEY'] = secret_key 226 227 # Initialize the Langfuse client using the credentials 228 langfuse = Langfuse() 229 ``` 230 """ 231 self.enabled = enabled 232 public_key = public_key or os.environ.get("LANGFUSE_PUBLIC_KEY") 233 secret_key = secret_key or os.environ.get("LANGFUSE_SECRET_KEY") 234 sample_rate = ( 235 sample_rate 236 if sample_rate 237 is not None # needs explicit None check, as 0 is a valid value 238 else float(os.environ.get("LANGFUSE_SAMPLE_RATE", 1.0)) 239 ) 240 241 if sample_rate is not None and ( 242 sample_rate > 1 or sample_rate < 0 243 ): # default value 1 will be set in the taskmanager 244 self.enabled = False 245 self.log.warning( 246 "Langfuse client is disabled since the sample rate provided is not between 0 and 1." 247 ) 248 249 threads = threads or int(os.environ.get("LANGFUSE_THREADS", 1)) 250 flush_at = flush_at or int(os.environ.get("LANGFUSE_FLUSH_AT", 15)) 251 flush_interval = flush_interval or float( 252 os.environ.get("LANGFUSE_FLUSH_INTERVAL", 0.5) 253 ) 254 255 max_retries = max_retries or int(os.environ.get("LANGFUSE_MAX_RETRIES", 3)) 256 timeout = timeout or int(os.environ.get("LANGFUSE_TIMEOUT", 20)) 257 258 if not self.enabled: 259 self.log.warning( 260 "Langfuse client is disabled. No observability data will be sent." 261 ) 262 263 elif not public_key: 264 self.enabled = False 265 self.log.warning( 266 "Langfuse client is disabled since no public_key was provided as a parameter or environment variable 'LANGFUSE_PUBLIC_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 267 ) 268 269 elif not secret_key: 270 self.enabled = False 271 self.log.warning( 272 "Langfuse client is disabled since no secret_key was provided as a parameter or environment variable 'LANGFUSE_SECRET_KEY'. See our docs: https://langfuse.com/docs/sdk/python/low-level-sdk#initialize-client" 273 ) 274 275 set_debug = debug if debug else (os.getenv("LANGFUSE_DEBUG", "False") == "True") 276 277 if set_debug is True: 278 # Ensures that debug level messages are logged when debug mode is on. 279 # Otherwise, defaults to WARNING level. 280 # See https://docs.python.org/3/howto/logging.html#what-happens-if-no-configuration-is-provided 281 logging.basicConfig() 282 # Set level for all loggers under langfuse package 283 logging.getLogger("langfuse").setLevel(logging.DEBUG) 284 285 clean_logger() 286 else: 287 logging.getLogger("langfuse").setLevel(logging.WARNING) 288 clean_logger() 289 290 self.base_url = ( 291 host 292 if host 293 else os.environ.get("LANGFUSE_HOST", "https://cloud.langfuse.com") 294 ) 295 296 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 297 298 if self.environment and not bool( 299 re.match(ENVIRONMENT_PATTERN, self.environment) 300 ): 301 self.log.error( 302 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Events will be rejected by Langfuse servers.' 303 ) 304 305 self.httpx_client = httpx_client or httpx.Client(timeout=timeout) 306 307 public_api_client = FernLangfuse( 308 base_url=self.base_url, 309 username=public_key, 310 password=secret_key, 311 x_langfuse_sdk_name="python", 312 x_langfuse_sdk_version=version, 313 x_langfuse_public_key=public_key, 314 httpx_client=self.httpx_client, 315 timeout=timeout, 316 ) 317 async_public_api_client = AsyncFernLangfuse( 318 base_url=self.base_url, 319 username=public_key, 320 password=secret_key, 321 x_langfuse_sdk_name="python", 322 x_langfuse_sdk_version=version, 323 x_langfuse_public_key=public_key, 324 timeout=timeout, 325 ) 326 327 self.api = public_api_client 328 self.client = public_api_client # legacy, to be removed in next major release 329 self.async_api = async_public_api_client 330 331 langfuse_client = LangfuseClient( 332 public_key=public_key, 333 secret_key=secret_key, 334 base_url=self.base_url, 335 version=version, 336 timeout=timeout, 337 session=self.httpx_client, 338 ) 339 340 args = { 341 "threads": threads, 342 "flush_at": flush_at, 343 "flush_interval": flush_interval, 344 "max_retries": max_retries, 345 "client": langfuse_client, 346 "api_client": self.client, 347 "public_key": public_key, 348 "sdk_name": "python", 349 "sdk_version": version, 350 "sdk_integration": sdk_integration, 351 "enabled": self.enabled, 352 "sample_rate": sample_rate, 353 "mask": mask, 354 } 355 356 self.task_manager = TaskManager(**args) 357 358 self.trace_id = None 359 self.project_id = None 360 361 self.release = self._get_release_value(release) 362 363 self.prompt_cache = PromptCache()
Initialize the Langfuse client.
Arguments:
- public_key: Public API key of Langfuse project. Can be set via
LANGFUSE_PUBLIC_KEY
environment variable. - secret_key: Secret API key of Langfuse project. Can be set via
LANGFUSE_SECRET_KEY
environment variable. - host: Host of Langfuse API. Can be set via
LANGFUSE_HOST
environment variable. Defaults tohttps://cloud.langfuse.com
. - release: Release number/hash of the application to provide analytics grouped by release. Can be set via
LANGFUSE_RELEASE
environment variable. - debug: Enables debug mode for more verbose logging. Can be set via
LANGFUSE_DEBUG
environment variable. - threads: Number of consumer threads to execute network requests. Helps scaling the SDK for high load. Only increase this if you run into scaling issues.
- flush_at: Max batch size that's sent to the API.
- flush_interval: Max delay until a new batch is sent to the API.
- max_retries: Max number of retries in case of API/network errors.
- timeout: Timeout of API requests in seconds. Defaults to 20 seconds.
- httpx_client: Pass your own httpx client for more customizability of requests.
- sdk_integration: Used by intgerations that wrap the Langfuse SDK to add context for debugging and support. Not to be used directly.
- enabled: Enables or disables the Langfuse client. If disabled, all observability calls to the backend will be no-ops.
- sample_rate: Sampling rate for tracing. If set to 0.2, only 20% of the data will be sent to the backend. Can be set via
LANGFUSE_SAMPLE_RATE
environment variable. - mask (langfuse.types.MaskFunction): Masking function for 'input' and 'output' fields in events. Function must take a single keyword argument
data
and return a serializable, masked version of the data. - environment (optional): The tracing environment. Can be any lowercase alphanumeric string with hyphens and underscores that does not start with 'langfuse'. Can bet set via
LANGFUSE_TRACING_ENVIRONMENT
environment variable.
Raises:
- ValueError: If public_key or secret_key are not set and not found in environment variables.
Example:
Initiating the Langfuse client should always be first step to use Langfuse.
import os from langfuse import Langfuse # Set the public and secret keys as environment variables os.environ['LANGFUSE_PUBLIC_KEY'] = public_key os.environ['LANGFUSE_SECRET_KEY'] = secret_key # Initialize the Langfuse client using the credentials langfuse = Langfuse()
388 def get_trace_url(self) -> str: 389 """Get the URL of the current trace to view it in the Langfuse UI.""" 390 project_id = self._get_project_id() 391 if not project_id: 392 return f"{self.base_url}/trace/{self.trace_id}" 393 394 return f"{self.base_url}/project/{project_id}/traces/{self.trace_id}"
Get the URL of the current trace to view it in the Langfuse UI.
396 def get_dataset( 397 self, name: str, *, fetch_items_page_size: Optional[int] = 50 398 ) -> "DatasetClient": 399 """Fetch a dataset by its name. 400 401 Args: 402 name (str): The name of the dataset to fetch. 403 fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50. 404 405 Returns: 406 DatasetClient: The dataset with the given name. 407 """ 408 try: 409 self.log.debug(f"Getting datasets {name}") 410 dataset = self.client.datasets.get(dataset_name=name) 411 412 dataset_items = [] 413 page = 1 414 while True: 415 new_items = self.client.dataset_items.list( 416 dataset_name=self._url_encode(name), 417 page=page, 418 limit=fetch_items_page_size, 419 ) 420 dataset_items.extend(new_items.data) 421 if new_items.meta.total_pages <= page: 422 break 423 page += 1 424 425 items = [DatasetItemClient(i, langfuse=self) for i in dataset_items] 426 427 return DatasetClient(dataset, items=items) 428 except Exception as e: 429 handle_fern_exception(e) 430 raise e
Fetch a dataset by its name.
Arguments:
- name (str): The name of the dataset to fetch.
- fetch_items_page_size (Optional[int]): All items of the dataset will be fetched in chunks of this size. Defaults to 50.
Returns:
DatasetClient: The dataset with the given name.
432 def get_dataset_item(self, id: str) -> "DatasetItemClient": 433 """Get the dataset item with the given id.""" 434 try: 435 self.log.debug(f"Getting dataset item {id}") 436 dataset_item = self.client.dataset_items.get(id=id) 437 return DatasetItemClient(dataset_item, langfuse=self) 438 except Exception as e: 439 handle_fern_exception(e) 440 raise e
Get the dataset item with the given id.
442 def auth_check(self) -> bool: 443 """Check if the provided credentials (public and secret key) are valid. 444 445 Raises: 446 Exception: If no projects were found for the provided credentials. 447 448 Note: 449 This method is blocking. It is discouraged to use it in production code. 450 """ 451 try: 452 projects = self.client.projects.get() 453 self.log.debug( 454 f"Auth check successful, found {len(projects.data)} projects" 455 ) 456 if len(projects.data) == 0: 457 raise Exception( 458 "Auth check failed, no project found for the keys provided." 459 ) 460 return True 461 462 except Exception as e: 463 handle_fern_exception(e) 464 raise e
Check if the provided credentials (public and secret key) are valid.
Raises:
- Exception: If no projects were found for the provided credentials.
Note:
This method is blocking. It is discouraged to use it in production code.
466 def get_dataset_runs( 467 self, 468 dataset_name: str, 469 *, 470 page: typing.Optional[int] = None, 471 limit: typing.Optional[int] = None, 472 ) -> PaginatedDatasetRuns: 473 """Get all dataset runs. 474 475 Args: 476 dataset_name (str): Name of the dataset. 477 page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None. 478 limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50. 479 480 Returns: 481 PaginatedDatasetRuns: The dataset runs. 482 """ 483 try: 484 self.log.debug("Getting dataset runs") 485 return self.client.datasets.get_runs( 486 dataset_name=self._url_encode(dataset_name), page=page, limit=limit 487 ) 488 except Exception as e: 489 handle_fern_exception(e) 490 raise e
Get all dataset runs.
Arguments:
- dataset_name (str): Name of the dataset.
- page (Optional[int]): Page number of the dataset runs to return, starts at 1. Defaults to None.
- limit (Optional[int]): Maximum number of dataset runs to return. Defaults to 50.
Returns:
PaginatedDatasetRuns: The dataset runs.
492 def get_dataset_run( 493 self, 494 dataset_name: str, 495 dataset_run_name: str, 496 ) -> DatasetRunWithItems: 497 """Get a dataset run. 498 499 Args: 500 dataset_name: Name of the dataset. 501 dataset_run_name: Name of the dataset run. 502 503 Returns: 504 DatasetRunWithItems: The dataset run. 505 """ 506 try: 507 self.log.debug( 508 f"Getting dataset runs for dataset {dataset_name} and run {dataset_run_name}" 509 ) 510 return self.client.datasets.get_run( 511 dataset_name=self._url_encode(dataset_name), 512 run_name=self._url_encode(dataset_run_name), 513 ) 514 except Exception as e: 515 handle_fern_exception(e) 516 raise e
Get a dataset run.
Arguments:
- dataset_name: Name of the dataset.
- dataset_run_name: Name of the dataset run.
Returns:
DatasetRunWithItems: The dataset run.
518 def create_dataset( 519 self, 520 name: str, 521 description: Optional[str] = None, 522 metadata: Optional[Any] = None, 523 ) -> Dataset: 524 """Create a dataset with the given name on Langfuse. 525 526 Args: 527 name: Name of the dataset to create. 528 description: Description of the dataset. Defaults to None. 529 metadata: Additional metadata. Defaults to None. 530 531 Returns: 532 Dataset: The created dataset as returned by the Langfuse API. 533 """ 534 try: 535 body = CreateDatasetRequest( 536 name=name, description=description, metadata=metadata 537 ) 538 self.log.debug(f"Creating datasets {body}") 539 return self.client.datasets.create(request=body) 540 except Exception as e: 541 handle_fern_exception(e) 542 raise e
Create a dataset with the given name on Langfuse.
Arguments:
- name: Name of the dataset to create.
- description: Description of the dataset. Defaults to None.
- metadata: Additional metadata. Defaults to None.
Returns:
Dataset: The created dataset as returned by the Langfuse API.
544 def create_dataset_item( 545 self, 546 dataset_name: str, 547 input: Optional[Any] = None, 548 expected_output: Optional[Any] = None, 549 metadata: Optional[Any] = None, 550 source_trace_id: Optional[str] = None, 551 source_observation_id: Optional[str] = None, 552 status: Optional[DatasetStatus] = None, 553 id: Optional[str] = None, 554 ) -> DatasetItem: 555 """Create a dataset item. 556 557 Upserts if an item with id already exists. 558 559 Args: 560 dataset_name: Name of the dataset in which the dataset item should be created. 561 input: Input data. Defaults to None. Can contain any dict, list or scalar. 562 expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar. 563 metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar. 564 source_trace_id: Id of the source trace. Defaults to None. 565 source_observation_id: Id of the source observation. Defaults to None. 566 status: Status of the dataset item. Defaults to ACTIVE for newly created items. 567 id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets. 568 569 Returns: 570 DatasetItem: The created dataset item as returned by the Langfuse API. 571 572 Example: 573 ```python 574 from langfuse import Langfuse 575 576 langfuse = Langfuse() 577 578 # Uploading items to the Langfuse dataset named "capital_cities" 579 langfuse.create_dataset_item( 580 dataset_name="capital_cities", 581 input={"input": {"country": "Italy"}}, 582 expected_output={"expected_output": "Rome"}, 583 metadata={"foo": "bar"} 584 ) 585 ``` 586 """ 587 try: 588 body = CreateDatasetItemRequest( 589 datasetName=dataset_name, 590 input=input, 591 expectedOutput=expected_output, 592 metadata=metadata, 593 sourceTraceId=source_trace_id, 594 sourceObservationId=source_observation_id, 595 status=status, 596 id=id, 597 ) 598 self.log.debug(f"Creating dataset item {body}") 599 return self.client.dataset_items.create(request=body) 600 except Exception as e: 601 handle_fern_exception(e) 602 raise e
Create a dataset item.
Upserts if an item with id already exists.
Arguments:
- dataset_name: Name of the dataset in which the dataset item should be created.
- input: Input data. Defaults to None. Can contain any dict, list or scalar.
- expected_output: Expected output data. Defaults to None. Can contain any dict, list or scalar.
- metadata: Additional metadata. Defaults to None. Can contain any dict, list or scalar.
- source_trace_id: Id of the source trace. Defaults to None.
- source_observation_id: Id of the source observation. Defaults to None.
- status: Status of the dataset item. Defaults to ACTIVE for newly created items.
- id: Id of the dataset item. Defaults to None. Provide your own id if you want to dedupe dataset items. Id needs to be globally unique and cannot be reused across datasets.
Returns:
DatasetItem: The created dataset item as returned by the Langfuse API.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Uploading items to the Langfuse dataset named "capital_cities" langfuse.create_dataset_item( dataset_name="capital_cities", input={"input": {"country": "Italy"}}, expected_output={"expected_output": "Rome"}, metadata={"foo": "bar"} )
604 def fetch_trace( 605 self, 606 id: str, 607 ) -> FetchTraceResponse: 608 """Fetch a trace via the Langfuse API by its id. 609 610 Args: 611 id: The id of the trace to fetch. 612 613 Returns: 614 FetchTraceResponse: The trace with full details as returned by the Langfuse API on `data`. 615 616 Raises: 617 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 618 """ 619 try: 620 self.log.debug(f"Getting trace {id}") 621 trace = self.client.trace.get(id) 622 return FetchTraceResponse(data=trace) 623 except Exception as e: 624 handle_fern_exception(e) 625 raise e
Fetch a trace via the Langfuse API by its id.
Arguments:
- id: The id of the trace to fetch.
Returns:
FetchTraceResponse: The trace with full details as returned by the Langfuse API on
data
.
Raises:
- Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request.
627 def get_trace( 628 self, 629 id: str, 630 ) -> TraceWithFullDetails: 631 """Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead. 632 633 Args: 634 id: The id of the trace to fetch. 635 636 Returns: 637 TraceWithFullDetails: The trace with full details as returned by the Langfuse API. 638 639 Raises: 640 Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request. 641 """ 642 warnings.warn( 643 "get_trace is deprecated, use fetch_trace instead.", 644 DeprecationWarning, 645 ) 646 647 try: 648 self.log.debug(f"Getting trace {id}") 649 return self.client.trace.get(id) 650 except Exception as e: 651 handle_fern_exception(e) 652 raise e
Get a trace via the Langfuse API by its id. Deprecated, use fetch_trace instead.
Arguments:
- id: The id of the trace to fetch.
Returns:
TraceWithFullDetails: The trace with full details as returned by the Langfuse API.
Raises:
- Exception: If the trace with the given id could not be found within the authenticated project or if an error occurred during the request.
654 def fetch_traces( 655 self, 656 *, 657 page: Optional[int] = None, 658 limit: Optional[int] = None, 659 user_id: Optional[str] = None, 660 name: Optional[str] = None, 661 session_id: Optional[str] = None, 662 from_timestamp: Optional[dt.datetime] = None, 663 to_timestamp: Optional[dt.datetime] = None, 664 environment: Optional[Union[str, Sequence[str]]] = None, 665 order_by: Optional[str] = None, 666 tags: Optional[Union[str, Sequence[str]]] = None, 667 ) -> FetchTracesResponse: 668 """Fetch a list of traces in the current project matching the given parameters. 669 670 Args: 671 page (Optional[int]): Page number, starts at 1. Defaults to None. 672 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 673 name (Optional[str]): Filter by name of traces. Defaults to None. 674 user_id (Optional[str]): Filter by user_id. Defaults to None. 675 session_id (Optional[str]): Filter by session_id. Defaults to None. 676 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 677 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 678 environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None. 679 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 680 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 681 682 Returns: 683 FetchTracesResponse, list of traces on `data` and metadata on `meta`. 684 685 Raises: 686 Exception: If an error occurred during the request. 687 """ 688 try: 689 self.log.debug( 690 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {environment}, {order_by}, {tags}" 691 ) 692 res = self.client.trace.list( 693 page=page, 694 limit=limit, 695 name=name, 696 user_id=user_id, 697 session_id=session_id, 698 from_timestamp=from_timestamp, 699 to_timestamp=to_timestamp, 700 environment=environment, 701 order_by=order_by, 702 tags=tags, 703 ) 704 return FetchTracesResponse(data=res.data, meta=res.meta) 705 except Exception as e: 706 handle_fern_exception(e) 707 raise e
Fetch a list of traces in the current project matching the given parameters.
Arguments:
- page (Optional[int]): Page number, starts at 1. Defaults to None.
- limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None.
- name (Optional[str]): Filter by name of traces. Defaults to None.
- user_id (Optional[str]): Filter by user_id. Defaults to None.
- session_id (Optional[str]): Filter by session_id. Defaults to None.
- from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None.
- to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None.
- environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None.
- order_by (Optional[str]): Format of the string
[field].[asc/desc]
. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example:timestamp.asc
. Defaults to None. - tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None.
Returns:
FetchTracesResponse, list of traces on
data
and metadata onmeta
.
Raises:
- Exception: If an error occurred during the request.
709 def get_traces( 710 self, 711 *, 712 page: Optional[int] = None, 713 limit: Optional[int] = None, 714 user_id: Optional[str] = None, 715 name: Optional[str] = None, 716 session_id: Optional[str] = None, 717 from_timestamp: Optional[dt.datetime] = None, 718 to_timestamp: Optional[dt.datetime] = None, 719 order_by: Optional[str] = None, 720 tags: Optional[Union[str, Sequence[str]]] = None, 721 ) -> Traces: 722 """Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead. 723 724 Args: 725 page (Optional[int]): Page number, starts at 1. Defaults to None. 726 limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None. 727 name (Optional[str]): Filter by name of traces. Defaults to None. 728 user_id (Optional[str]): Filter by user_id. Defaults to None. 729 session_id (Optional[str]): Filter by session_id. Defaults to None. 730 from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None. 731 to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None. 732 order_by (Optional[str]): Format of the string `[field].[asc/desc]`. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example: `timestamp.asc`. Defaults to None. 733 tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None. 734 735 Returns: 736 List of Traces 737 738 Raises: 739 Exception: If an error occurred during the request. 740 """ 741 warnings.warn( 742 "get_traces is deprecated, use fetch_traces instead.", 743 DeprecationWarning, 744 ) 745 try: 746 self.log.debug( 747 f"Getting traces... {page}, {limit}, {name}, {user_id}, {session_id}, {from_timestamp}, {to_timestamp}, {order_by}, {tags}" 748 ) 749 return self.client.trace.list( 750 page=page, 751 limit=limit, 752 name=name, 753 user_id=user_id, 754 session_id=session_id, 755 from_timestamp=from_timestamp, 756 to_timestamp=to_timestamp, 757 order_by=order_by, 758 tags=tags, 759 ) 760 except Exception as e: 761 handle_fern_exception(e) 762 raise e
Get a list of traces in the current project matching the given parameters. Deprecated, use fetch_traces instead.
Arguments:
- page (Optional[int]): Page number, starts at 1. Defaults to None.
- limit (Optional[int]): Limit of items per page. If you encounter API issues due to too large page sizes, try to reduce the limit. Defaults to None.
- name (Optional[str]): Filter by name of traces. Defaults to None.
- user_id (Optional[str]): Filter by user_id. Defaults to None.
- session_id (Optional[str]): Filter by session_id. Defaults to None.
- from_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp on or after this datetime. Defaults to None.
- to_timestamp (Optional[dt.datetime]): Retrieve only traces with a timestamp before this datetime. Defaults to None.
- order_by (Optional[str]): Format of the string
[field].[asc/desc]
. Fields: id, timestamp, name, userId, release, version, public, bookmarked, sessionId. Example:timestamp.asc
. Defaults to None. - tags (Optional[Union[str, Sequence[str]]]): Filter by tags. Defaults to None.
Returns:
List of Traces
Raises:
- Exception: If an error occurred during the request.
764 def fetch_observations( 765 self, 766 *, 767 page: typing.Optional[int] = None, 768 limit: typing.Optional[int] = None, 769 name: typing.Optional[str] = None, 770 user_id: typing.Optional[str] = None, 771 trace_id: typing.Optional[str] = None, 772 parent_observation_id: typing.Optional[str] = None, 773 from_start_time: typing.Optional[dt.datetime] = None, 774 to_start_time: typing.Optional[dt.datetime] = None, 775 environment: Optional[Union[str, Sequence[str]]] = None, 776 type: typing.Optional[str] = None, 777 ) -> FetchObservationsResponse: 778 """Get a list of observations in the current project matching the given parameters. 779 780 Args: 781 page (Optional[int]): Page number of the observations to return. Defaults to None. 782 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 783 name (Optional[str]): Name of the observations to return. Defaults to None. 784 user_id (Optional[str]): User identifier. Defaults to None. 785 trace_id (Optional[str]): Trace identifier. Defaults to None. 786 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 787 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 788 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 789 environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None. 790 type (Optional[str]): Type of the observation. Defaults to None. 791 792 Returns: 793 FetchObservationsResponse, list of observations on `data` and metadata on `meta`. 794 795 Raises: 796 Exception: If an error occurred during the request. 797 """ 798 try: 799 self.log.debug( 800 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {environment}, {type}" 801 ) 802 res = self.client.observations.get_many( 803 page=page, 804 limit=limit, 805 name=name, 806 user_id=user_id, 807 trace_id=trace_id, 808 parent_observation_id=parent_observation_id, 809 from_start_time=from_start_time, 810 to_start_time=to_start_time, 811 environment=environment, 812 type=type, 813 ) 814 return FetchObservationsResponse(data=res.data, meta=res.meta) 815 except Exception as e: 816 self.log.exception(e) 817 raise e
Get a list of observations in the current project matching the given parameters.
Arguments:
- page (Optional[int]): Page number of the observations to return. Defaults to None.
- limit (Optional[int]): Maximum number of observations to return. Defaults to None.
- name (Optional[str]): Name of the observations to return. Defaults to None.
- user_id (Optional[str]): User identifier. Defaults to None.
- trace_id (Optional[str]): Trace identifier. Defaults to None.
- parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None.
- from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None.
- to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None.
- environment (Optional[Union[str, Sequence[str]]]): Filter by environment. Defaults to None.
- type (Optional[str]): Type of the observation. Defaults to None.
Returns:
FetchObservationsResponse, list of observations on
data
and metadata onmeta
.
Raises:
- Exception: If an error occurred during the request.
819 def get_observations( 820 self, 821 *, 822 page: typing.Optional[int] = None, 823 limit: typing.Optional[int] = None, 824 name: typing.Optional[str] = None, 825 user_id: typing.Optional[str] = None, 826 trace_id: typing.Optional[str] = None, 827 parent_observation_id: typing.Optional[str] = None, 828 from_start_time: typing.Optional[dt.datetime] = None, 829 to_start_time: typing.Optional[dt.datetime] = None, 830 type: typing.Optional[str] = None, 831 ) -> ObservationsViews: 832 """Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead. 833 834 Args: 835 page (Optional[int]): Page number of the observations to return. Defaults to None. 836 limit (Optional[int]): Maximum number of observations to return. Defaults to None. 837 name (Optional[str]): Name of the observations to return. Defaults to None. 838 user_id (Optional[str]): User identifier. Defaults to None. 839 trace_id (Optional[str]): Trace identifier. Defaults to None. 840 parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None. 841 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 842 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 843 type (Optional[str]): Type of the observation. Defaults to None. 844 845 Returns: 846 List of ObservationsViews: List of observations in the project matching the given parameters. 847 848 Raises: 849 Exception: If an error occurred during the request. 850 """ 851 warnings.warn( 852 "get_observations is deprecated, use fetch_observations instead.", 853 DeprecationWarning, 854 ) 855 try: 856 self.log.debug( 857 f"Getting observations... {page}, {limit}, {name}, {user_id}, {trace_id}, {parent_observation_id}, {from_start_time}, {to_start_time}, {type}" 858 ) 859 return self.client.observations.get_many( 860 page=page, 861 limit=limit, 862 name=name, 863 user_id=user_id, 864 trace_id=trace_id, 865 parent_observation_id=parent_observation_id, 866 from_start_time=from_start_time, 867 to_start_time=to_start_time, 868 type=type, 869 ) 870 except Exception as e: 871 handle_fern_exception(e) 872 raise e
Get a list of observations in the current project matching the given parameters. Deprecated, use fetch_observations instead.
Arguments:
- page (Optional[int]): Page number of the observations to return. Defaults to None.
- limit (Optional[int]): Maximum number of observations to return. Defaults to None.
- name (Optional[str]): Name of the observations to return. Defaults to None.
- user_id (Optional[str]): User identifier. Defaults to None.
- trace_id (Optional[str]): Trace identifier. Defaults to None.
- parent_observation_id (Optional[str]): Parent observation identifier. Defaults to None.
- from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None.
- to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None.
- type (Optional[str]): Type of the observation. Defaults to None.
Returns:
List of ObservationsViews: List of observations in the project matching the given parameters.
Raises:
- Exception: If an error occurred during the request.
874 def get_generations( 875 self, 876 *, 877 page: typing.Optional[int] = None, 878 limit: typing.Optional[int] = None, 879 name: typing.Optional[str] = None, 880 user_id: typing.Optional[str] = None, 881 trace_id: typing.Optional[str] = None, 882 from_start_time: typing.Optional[dt.datetime] = None, 883 to_start_time: typing.Optional[dt.datetime] = None, 884 parent_observation_id: typing.Optional[str] = None, 885 ) -> ObservationsViews: 886 """Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead. 887 888 Args: 889 page (Optional[int]): Page number of the generations to return. Defaults to None. 890 limit (Optional[int]): Maximum number of generations to return. Defaults to None. 891 name (Optional[str]): Name of the generations to return. Defaults to None. 892 user_id (Optional[str]): User identifier of the generations to return. Defaults to None. 893 trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None. 894 from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None. 895 to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None. 896 parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None. 897 898 Returns: 899 List of ObservationsViews: List of generations in the project matching the given parameters. 900 901 Raises: 902 Exception: If an error occurred during the request. 903 """ 904 warnings.warn( 905 "get_generations is deprecated, use `fetch_observations(type='GENERATION')` instead.", 906 DeprecationWarning, 907 ) 908 return self.get_observations( 909 page=page, 910 limit=limit, 911 name=name, 912 user_id=user_id, 913 trace_id=trace_id, 914 parent_observation_id=parent_observation_id, 915 from_start_time=from_start_time, 916 to_start_time=to_start_time, 917 type="GENERATION", 918 )
Get a list of generations in the current project matching the given parameters. Deprecated, use fetch_observations(type='GENERATION') instead.
Arguments:
- page (Optional[int]): Page number of the generations to return. Defaults to None.
- limit (Optional[int]): Maximum number of generations to return. Defaults to None.
- name (Optional[str]): Name of the generations to return. Defaults to None.
- user_id (Optional[str]): User identifier of the generations to return. Defaults to None.
- trace_id (Optional[str]): Trace identifier of the generations to return. Defaults to None.
- from_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time on or after this datetime. Defaults to None.
- to_start_time (Optional[dt.datetime]): Retrieve only observations with a start_time before this datetime. Defaults to None.
- parent_observation_id (Optional[str]): Parent observation identifier of the generations to return. Defaults to None.
Returns:
List of ObservationsViews: List of generations in the project matching the given parameters.
Raises:
- Exception: If an error occurred during the request.
920 def fetch_observation( 921 self, 922 id: str, 923 ) -> FetchObservationResponse: 924 """Get an observation in the current project with the given identifier. 925 926 Args: 927 id: The identifier of the observation to fetch. 928 929 Returns: 930 FetchObservationResponse: The observation with the given id on `data`. 931 932 Raises: 933 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 934 """ 935 try: 936 self.log.debug(f"Getting observation {id}") 937 observation = self.client.observations.get(id) 938 return FetchObservationResponse(data=observation) 939 except Exception as e: 940 handle_fern_exception(e) 941 raise e
Get an observation in the current project with the given identifier.
Arguments:
- id: The identifier of the observation to fetch.
Returns:
FetchObservationResponse: The observation with the given id on
data
.
Raises:
- Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request.
943 def fetch_media(self, id: str) -> FetchMediaResponse: 944 """Get media content by ID. 945 946 Args: 947 id: The identifier of the media content to fetch. 948 949 Returns: 950 FetchMediaResponse: The media data of the given id on `data`. 951 952 Raises: 953 Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request. 954 """ 955 try: 956 return FetchMediaResponse(data=self.client.media.get(id)) 957 except Exception as e: 958 handle_fern_exception(e) 959 raise e
Get media content by ID.
Arguments:
- id: The identifier of the media content to fetch.
Returns:
FetchMediaResponse: The media data of the given id on
data
.
Raises:
- Exception: If the media content with the given id could not be found within the authenticated project or if an error occurred during the request.
961 def resolve_media_references( 962 self, 963 *, 964 obj: Any, 965 resolve_with: Literal["base64_data_uri"], 966 max_depth: int = 10, 967 content_fetch_timeout_seconds: int = 10, 968 ): 969 """Replace media reference strings in an object with base64 data URIs. 970 971 This method recursively traverses an object (up to max_depth) looking for media reference strings 972 in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using 973 the provided Langfuse client and replaces the reference string with a base64 data URI. 974 975 If fetching media content fails for a reference string, a warning is logged and the reference 976 string is left unchanged. 977 978 Args: 979 obj: The object to process. Can be a primitive value, array, or nested object. 980 If the object has a __dict__ attribute, a dict will be returned instead of the original object type. 981 resolve_with: The representation of the media content to replace the media reference string with. 982 Currently only "base64_data_uri" is supported. 983 max_depth: int: The maximum depth to traverse the object. Default is 10. 984 content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10. 985 986 Returns: 987 A deep copy of the input object with all media references replaced with base64 data URIs where possible. 988 If the input object has a __dict__ attribute, a dict will be returned instead of the original object type. 989 990 Example: 991 obj = { 992 "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", 993 "nested": { 994 "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" 995 } 996 } 997 998 result = await LangfuseMedia.resolve_media_references(obj, langfuse_client) 999 1000 # Result: 1001 # { 1002 # "image": "...", 1003 # "nested": { 1004 # "pdf": "data:application/pdf;base64,JVBERi0xLjcK..." 1005 # } 1006 # } 1007 """ 1008 return LangfuseMedia.resolve_media_references( 1009 langfuse_client=self, 1010 obj=obj, 1011 resolve_with=resolve_with, 1012 max_depth=max_depth, 1013 content_fetch_timeout_seconds=content_fetch_timeout_seconds, 1014 )
Replace media reference strings in an object with base64 data URIs.
This method recursively traverses an object (up to max_depth) looking for media reference strings in the format "@@@langfuseMedia:...@@@". When found, it (synchronously) fetches the actual media content using the provided Langfuse client and replaces the reference string with a base64 data URI.
If fetching media content fails for a reference string, a warning is logged and the reference string is left unchanged.
Arguments:
- obj: The object to process. Can be a primitive value, array, or nested object. If the object has a __dict__ attribute, a dict will be returned instead of the original object type.
- resolve_with: The representation of the media content to replace the media reference string with. Currently only "base64_data_uri" is supported.
- max_depth: int: The maximum depth to traverse the object. Default is 10.
- content_fetch_timeout_seconds: int: The timeout in seconds for fetching media content. Default is 10.
Returns:
A deep copy of the input object with all media references replaced with base64 data URIs where possible. If the input object has a __dict__ attribute, a dict will be returned instead of the original object type.
Example:
obj = { "image": "@@@langfuseMedia:type=image/jpeg|id=123|source=bytes@@@", "nested": { "pdf": "@@@langfuseMedia:type=application/pdf|id=456|source=bytes@@@" } }
result = await LangfuseMedia.resolve_media_references(obj, langfuse_client)
Result:
{
"image": "...",
"nested": {
"pdf": "data:application/pdf;base64,JVBERi0xLjcK..."
}
}
1016 def get_observation( 1017 self, 1018 id: str, 1019 ) -> Observation: 1020 """Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead. 1021 1022 Args: 1023 id: The identifier of the observation to fetch. 1024 1025 Raises: 1026 Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request. 1027 """ 1028 warnings.warn( 1029 "get_observation is deprecated, use fetch_observation instead.", 1030 DeprecationWarning, 1031 ) 1032 try: 1033 self.log.debug(f"Getting observation {id}") 1034 return self.client.observations.get(id) 1035 except Exception as e: 1036 handle_fern_exception(e) 1037 raise e
Get an observation in the current project with the given identifier. Deprecated, use fetch_observation instead.
Arguments:
- id: The identifier of the observation to fetch.
Raises:
- Exception: If the observation with the given id could not be found within the authenticated project or if an error occurred during the request.
1039 def fetch_sessions( 1040 self, 1041 *, 1042 page: typing.Optional[int] = None, 1043 limit: typing.Optional[int] = None, 1044 from_timestamp: typing.Optional[dt.datetime] = None, 1045 to_timestamp: typing.Optional[dt.datetime] = None, 1046 ) -> FetchSessionsResponse: 1047 """Get a list of sessions in the current project. 1048 1049 Args: 1050 page (Optional[int]): Page number of the sessions to return. Defaults to None. 1051 limit (Optional[int]): Maximum number of sessions to return. Defaults to None. 1052 from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None. 1053 to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None. 1054 1055 Returns: 1056 FetchSessionsResponse, list of sessions on `data` and metadata on `meta`. 1057 1058 Raises: 1059 Exception: If an error occurred during the request. 1060 """ 1061 try: 1062 self.log.debug( 1063 f"Getting sessions... {page}, {limit}, {from_timestamp}, {to_timestamp}" 1064 ) 1065 res = self.client.sessions.list( 1066 page=page, 1067 limit=limit, 1068 from_timestamp=from_timestamp, 1069 to_timestamp=to_timestamp, 1070 ) 1071 return FetchSessionsResponse(data=res.data, meta=res.meta) 1072 except Exception as e: 1073 handle_fern_exception(e) 1074 raise e
Get a list of sessions in the current project.
Arguments:
- page (Optional[int]): Page number of the sessions to return. Defaults to None.
- limit (Optional[int]): Maximum number of sessions to return. Defaults to None.
- from_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp on or after this datetime. Defaults to None.
- to_timestamp (Optional[dt.datetime]): Retrieve only sessions with a timestamp before this datetime. Defaults to None.
Returns:
FetchSessionsResponse, list of sessions on
data
and metadata onmeta
.
Raises:
- Exception: If an error occurred during the request.
1104 def get_prompt( 1105 self, 1106 name: str, 1107 version: Optional[int] = None, 1108 *, 1109 label: Optional[str] = None, 1110 type: Literal["chat", "text"] = "text", 1111 cache_ttl_seconds: Optional[int] = None, 1112 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]] = None, 1113 max_retries: Optional[int] = None, 1114 fetch_timeout_seconds: Optional[int] = None, 1115 ) -> PromptClient: 1116 """Get a prompt. 1117 1118 This method attempts to fetch the requested prompt from the local cache. If the prompt is not found 1119 in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again 1120 and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will 1121 return the expired prompt as a fallback. 1122 1123 Args: 1124 name (str): The name of the prompt to retrieve. 1125 1126 Keyword Args: 1127 version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1128 label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, the `production` label is returned. Specify either version or label, not both. 1129 cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a 1130 keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. 1131 type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". 1132 fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. 1133 max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. 1134 fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default. 1135 1136 Returns: 1137 The prompt object retrieved from the cache or directly fetched if not cached or expired of type 1138 - TextPromptClient, if type argument is 'text'. 1139 - ChatPromptClient, if type argument is 'chat'. 1140 1141 Raises: 1142 Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an 1143 expired prompt in the cache, in which case it logs a warning and returns the expired prompt. 1144 """ 1145 if version is not None and label is not None: 1146 raise ValueError("Cannot specify both version and label at the same time.") 1147 1148 if not name: 1149 raise ValueError("Prompt name cannot be empty.") 1150 1151 cache_key = PromptCache.generate_cache_key(name, version=version, label=label) 1152 bounded_max_retries = self._get_bounded_max_retries( 1153 max_retries, default_max_retries=2, max_retries_upper_bound=4 1154 ) 1155 1156 self.log.debug(f"Getting prompt '{cache_key}'") 1157 cached_prompt = self.prompt_cache.get(cache_key) 1158 1159 if cached_prompt is None or cache_ttl_seconds == 0: 1160 self.log.debug( 1161 f"Prompt '{cache_key}' not found in cache or caching disabled." 1162 ) 1163 try: 1164 return self._fetch_prompt_and_update_cache( 1165 name, 1166 version=version, 1167 label=label, 1168 ttl_seconds=cache_ttl_seconds, 1169 max_retries=bounded_max_retries, 1170 fetch_timeout_seconds=fetch_timeout_seconds, 1171 ) 1172 except Exception as e: 1173 if fallback: 1174 self.log.warning( 1175 f"Returning fallback prompt for '{cache_key}' due to fetch error: {e}" 1176 ) 1177 1178 fallback_client_args = { 1179 "name": name, 1180 "prompt": fallback, 1181 "type": type, 1182 "version": version or 0, 1183 "config": {}, 1184 "labels": [label] if label else [], 1185 "tags": [], 1186 } 1187 1188 if type == "text": 1189 return TextPromptClient( 1190 prompt=Prompt_Text(**fallback_client_args), 1191 is_fallback=True, 1192 ) 1193 1194 if type == "chat": 1195 return ChatPromptClient( 1196 prompt=Prompt_Chat(**fallback_client_args), 1197 is_fallback=True, 1198 ) 1199 1200 raise e 1201 1202 if cached_prompt.is_expired(): 1203 self.log.debug(f"Stale prompt '{cache_key}' found in cache.") 1204 try: 1205 # refresh prompt in background thread, refresh_prompt deduplicates tasks 1206 self.log.debug(f"Refreshing prompt '{cache_key}' in background.") 1207 self.prompt_cache.add_refresh_prompt_task( 1208 cache_key, 1209 lambda: self._fetch_prompt_and_update_cache( 1210 name, 1211 version=version, 1212 label=label, 1213 ttl_seconds=cache_ttl_seconds, 1214 max_retries=bounded_max_retries, 1215 fetch_timeout_seconds=fetch_timeout_seconds, 1216 ), 1217 ) 1218 self.log.debug(f"Returning stale prompt '{cache_key}' from cache.") 1219 # return stale prompt 1220 return cached_prompt.value 1221 1222 except Exception as e: 1223 self.log.warning( 1224 f"Error when refreshing cached prompt '{cache_key}', returning cached version. Error: {e}" 1225 ) 1226 # creation of refresh prompt task failed, return stale prompt 1227 return cached_prompt.value 1228 1229 return cached_prompt.value
Get a prompt.
This method attempts to fetch the requested prompt from the local cache. If the prompt is not found in the cache or if the cached prompt has expired, it will try to fetch the prompt from the server again and update the cache. If fetching the new prompt fails, and there is an expired prompt in the cache, it will return the expired prompt as a fallback.
Arguments:
- name (str): The name of the prompt to retrieve.
Keyword Args:
version (Optional[int]): The version of the prompt to retrieve. If no label and version is specified, the
production
label is returned. Specify either version or label, not both. label: Optional[str]: The label of the prompt to retrieve. If no label and version is specified, theproduction
label is returned. Specify either version or label, not both. cache_ttl_seconds: Optional[int]: Time-to-live in seconds for caching the prompt. Must be specified as a keyword argument. If not set, defaults to 60 seconds. Disables caching if set to 0. type: Literal["chat", "text"]: The type of the prompt to retrieve. Defaults to "text". fallback: Union[Optional[List[ChatMessageDict]], Optional[str]]: The prompt string to return if fetching the prompt fails. Important on the first call where no cached prompt is available. Follows Langfuse prompt formatting with double curly braces for variables. Defaults to None. max_retries: Optional[int]: The maximum number of retries in case of API/network errors. Defaults to 2. The maximum value is 4. Retries have an exponential backoff with a maximum delay of 10 seconds. fetch_timeout_seconds: Optional[int]: The timeout in milliseconds for fetching the prompt. Defaults to the default timeout set on the SDK, which is 10 seconds per default.
Returns:
The prompt object retrieved from the cache or directly fetched if not cached or expired of type
- TextPromptClient, if type argument is 'text'.
- ChatPromptClient, if type argument is 'chat'.
Raises:
- Exception: Propagates any exceptions raised during the fetching of a new prompt, unless there is an
- expired prompt in the cache, in which case it logs a warning and returns the expired prompt.
1323 def create_prompt( 1324 self, 1325 *, 1326 name: str, 1327 prompt: Union[str, List[ChatMessageDict]], 1328 is_active: Optional[bool] = None, # deprecated 1329 labels: List[str] = [], 1330 tags: Optional[List[str]] = None, 1331 type: Optional[Literal["chat", "text"]] = "text", 1332 config: Optional[Any] = None, 1333 commit_message: Optional[str] = None, 1334 ) -> PromptClient: 1335 """Create a new prompt in Langfuse. 1336 1337 Keyword Args: 1338 name : The name of the prompt to be created. 1339 prompt : The content of the prompt to be created. 1340 is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. 1341 labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. 1342 tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. 1343 config: Additional structured data to be saved with the prompt. Defaults to None. 1344 type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". 1345 commit_message: Optional string describing the change. 1346 1347 Returns: 1348 TextPromptClient: The prompt if type argument is 'text'. 1349 ChatPromptClient: The prompt if type argument is 'chat'. 1350 """ 1351 try: 1352 self.log.debug(f"Creating prompt {name=}, {version=}, {labels=}") 1353 1354 # Handle deprecated is_active flag 1355 if is_active: 1356 self.log.warning( 1357 "The 'is_active' flag is deprecated and will be removed in a future release. Please use the 'production' label instead." 1358 ) 1359 1360 labels = labels if "production" in labels else labels + ["production"] 1361 1362 if type == "chat": 1363 if not isinstance(prompt, list): 1364 raise ValueError( 1365 "For 'chat' type, 'prompt' must be a list of chat messages with role and content attributes." 1366 ) 1367 request = CreatePromptRequest_Chat( 1368 name=name, 1369 prompt=prompt, 1370 labels=labels, 1371 tags=tags, 1372 config=config or {}, 1373 commitMessage=commit_message, 1374 type="chat", 1375 ) 1376 server_prompt = self.client.prompts.create(request=request) 1377 1378 return ChatPromptClient(prompt=server_prompt) 1379 1380 if not isinstance(prompt, str): 1381 raise ValueError("For 'text' type, 'prompt' must be a string.") 1382 1383 request = CreatePromptRequest_Text( 1384 name=name, 1385 prompt=prompt, 1386 labels=labels, 1387 tags=tags, 1388 config=config or {}, 1389 commitMessage=commit_message, 1390 type="text", 1391 ) 1392 1393 server_prompt = self.client.prompts.create(request=request) 1394 return TextPromptClient(prompt=server_prompt) 1395 1396 except Exception as e: 1397 handle_fern_exception(e) 1398 raise e
Create a new prompt in Langfuse.
Keyword Args:
name : The name of the prompt to be created. prompt : The content of the prompt to be created. is_active [DEPRECATED] : A flag indicating whether the prompt is active or not. This is deprecated and will be removed in a future release. Please use the 'production' label instead. labels: The labels of the prompt. Defaults to None. To create a default-served prompt, add the 'production' label. tags: The tags of the prompt. Defaults to None. Will be applied to all versions of the prompt. config: Additional structured data to be saved with the prompt. Defaults to None. type: The type of the prompt to be created. "chat" vs. "text". Defaults to "text". commit_message: Optional string describing the change.
Returns:
TextPromptClient: The prompt if type argument is 'text'. ChatPromptClient: The prompt if type argument is 'chat'.
1400 def update_prompt( 1401 self, 1402 *, 1403 name: str, 1404 version: int, 1405 new_labels: List[str] = [], 1406 ): 1407 """Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name. 1408 1409 Args: 1410 name (str): The name of the prompt to update. 1411 version (int): The version number of the prompt to update. 1412 new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to []. 1413 1414 Returns: 1415 Prompt: The updated prompt from the Langfuse API. 1416 1417 """ 1418 updated_prompt = self.client.prompt_version.update( 1419 name=name, 1420 version=version, 1421 new_labels=new_labels, 1422 ) 1423 self.prompt_cache.invalidate(name) 1424 return updated_prompt
Update an existing prompt version in Langfuse. The Langfuse SDK prompt cache is invalidated for all prompts witht he specified name.
Arguments:
- name (str): The name of the prompt to update.
- version (int): The version number of the prompt to update.
- new_labels (List[str], optional): New labels to assign to the prompt version. Labels are unique across versions. The "latest" label is reserved and managed by Langfuse. Defaults to [].
Returns:
Prompt: The updated prompt from the Langfuse API.
1429 def trace( 1430 self, 1431 *, 1432 id: typing.Optional[str] = None, 1433 name: typing.Optional[str] = None, 1434 user_id: typing.Optional[str] = None, 1435 session_id: typing.Optional[str] = None, 1436 version: typing.Optional[str] = None, 1437 input: typing.Optional[typing.Any] = None, 1438 output: typing.Optional[typing.Any] = None, 1439 metadata: typing.Optional[typing.Any] = None, 1440 tags: typing.Optional[typing.List[str]] = None, 1441 timestamp: typing.Optional[dt.datetime] = None, 1442 public: typing.Optional[bool] = None, 1443 **kwargs, 1444 ) -> "StatefulTraceClient": 1445 """Create a trace. 1446 1447 Args: 1448 id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id. 1449 name: Identifier of the trace. Useful for sorting/filtering in the UI. 1450 input: The input of the trace. Can be any JSON object. 1451 output: The output of the trace. Can be any JSON object. 1452 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 1453 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 1454 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 1455 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 1456 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 1457 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 1458 timestamp: The timestamp of the trace. Defaults to the current time if not provided. 1459 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 1460 **kwargs: Additional keyword arguments that can be included in the trace. 1461 1462 Returns: 1463 StatefulTraceClient: The created trace. 1464 1465 Example: 1466 ```python 1467 from langfuse import Langfuse 1468 1469 langfuse = Langfuse() 1470 1471 trace = langfuse.trace( 1472 name="example-application", 1473 user_id="user-1234") 1474 ) 1475 ``` 1476 """ 1477 new_id = id or str(uuid.uuid4()) 1478 self.trace_id = new_id 1479 try: 1480 new_dict = { 1481 "id": new_id, 1482 "name": name, 1483 "userId": user_id, 1484 "sessionId": session_id 1485 or kwargs.get("sessionId", None), # backward compatibility 1486 "release": self.release, 1487 "version": version, 1488 "metadata": metadata, 1489 "input": input, 1490 "output": output, 1491 "tags": tags, 1492 "timestamp": timestamp or _get_timestamp(), 1493 "public": public, 1494 "environment": self.environment, 1495 } 1496 if kwargs is not None: 1497 new_dict.update(kwargs) 1498 1499 new_body = TraceBody(**new_dict) 1500 1501 self.log.debug(f"Creating trace {_filter_io_from_event_body(new_dict)}") 1502 event = { 1503 "id": str(uuid.uuid4()), 1504 "type": "trace-create", 1505 "body": new_body, 1506 } 1507 1508 self.task_manager.add_task( 1509 event, 1510 ) 1511 1512 except Exception as e: 1513 self.log.exception(e) 1514 finally: 1515 self._log_memory_usage() 1516 1517 return StatefulTraceClient( 1518 self.client, 1519 new_id, 1520 StateType.TRACE, 1521 new_id, 1522 self.task_manager, 1523 self.environment, 1524 )
Create a trace.
Arguments:
- id: The id of the trace can be set, defaults to a random id. Set it to link traces to external systems or when creating a distributed trace. Traces are upserted on id.
- name: Identifier of the trace. Useful for sorting/filtering in the UI.
- input: The input of the trace. Can be any JSON object.
- output: The output of the trace. Can be any JSON object.
- metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API.
- user_id: The id of the user that triggered the execution. Used to provide user-level analytics.
- session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier.
- version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging.
- release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging.
- tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API.
- timestamp: The timestamp of the trace. Defaults to the current time if not provided.
- public: You can make a trace
public
to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. - **kwargs: Additional keyword arguments that can be included in the trace.
Returns:
StatefulTraceClient: The created trace.
Example:
from langfuse import Langfuse langfuse = Langfuse() trace = langfuse.trace( name="example-application", user_id="user-1234") )
1603 def score( 1604 self, 1605 *, 1606 name: str, 1607 value: typing.Union[float, str], 1608 data_type: typing.Optional[ScoreDataType] = None, 1609 trace_id: typing.Optional[str] = None, 1610 id: typing.Optional[str] = None, 1611 comment: typing.Optional[str] = None, 1612 observation_id: typing.Optional[str] = None, 1613 config_id: typing.Optional[str] = None, 1614 **kwargs, 1615 ) -> "StatefulClient": 1616 """Create a score attached to a trace (and optionally an observation). 1617 1618 Args: 1619 name (str): Identifier of the score. 1620 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 1621 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 1622 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 1623 trace_id (str): The id of the trace to which the score should be attached. 1624 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 1625 comment (Optional[str]): Additional context/explanation of the score. 1626 observation_id (Optional[str]): The id of the observation to which the score should be attached. 1627 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 1628 **kwargs: Additional keyword arguments to include in the score. 1629 1630 Returns: 1631 StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided). 1632 1633 Example: 1634 ```python 1635 from langfuse import Langfuse 1636 1637 langfuse = Langfuse() 1638 1639 # Create a trace 1640 trace = langfuse.trace(name="example-application") 1641 1642 # Get id of created trace 1643 trace_id = trace.id 1644 1645 # Add score to the trace 1646 trace = langfuse.score( 1647 trace_id=trace_id, 1648 name="user-explicit-feedback", 1649 value=0.9, 1650 comment="I like how personalized the response is" 1651 ) 1652 ``` 1653 """ 1654 trace_id = trace_id or self.trace_id or str(uuid.uuid4()) 1655 new_id = id or str(uuid.uuid4()) 1656 try: 1657 new_dict = { 1658 "id": new_id, 1659 "trace_id": trace_id, 1660 "observation_id": observation_id, 1661 "name": name, 1662 "value": value, 1663 "data_type": data_type, 1664 "comment": comment, 1665 "config_id": config_id, 1666 "environment": self.environment, 1667 **kwargs, 1668 } 1669 1670 self.log.debug(f"Creating score {new_dict}...") 1671 new_body = ScoreBody(**new_dict) 1672 1673 event = { 1674 "id": str(uuid.uuid4()), 1675 "type": "score-create", 1676 "body": new_body, 1677 } 1678 self.task_manager.add_task(event) 1679 1680 except Exception as e: 1681 self.log.exception(e) 1682 finally: 1683 if observation_id is not None: 1684 return StatefulClient( 1685 self.client, 1686 observation_id, 1687 StateType.OBSERVATION, 1688 trace_id, 1689 self.task_manager, 1690 self.environment, 1691 ) 1692 else: 1693 return StatefulClient( 1694 self.client, 1695 new_id, 1696 StateType.TRACE, 1697 new_id, 1698 self.task_manager, 1699 self.environment, 1700 )
Create a score attached to a trace (and optionally an observation).
Arguments:
- name (str): Identifier of the score.
- value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores.
- data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores.
- trace_id (str): The id of the trace to which the score should be attached.
- id (Optional[str]): The id of the score. If not provided, a new UUID is generated.
- comment (Optional[str]): Additional context/explanation of the score.
- observation_id (Optional[str]): The id of the observation to which the score should be attached.
- config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None.
- **kwargs: Additional keyword arguments to include in the score.
Returns:
StatefulClient: Either the associated observation (if observation_id is provided) or the trace (if observation_id is not provided).
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name="example-application") # Get id of created trace trace_id = trace.id # Add score to the trace trace = langfuse.score( trace_id=trace_id, name="user-explicit-feedback", value=0.9, comment="I like how personalized the response is" )
1702 def span( 1703 self, 1704 *, 1705 id: typing.Optional[str] = None, 1706 trace_id: typing.Optional[str] = None, 1707 parent_observation_id: typing.Optional[str] = None, 1708 name: typing.Optional[str] = None, 1709 start_time: typing.Optional[dt.datetime] = None, 1710 end_time: typing.Optional[dt.datetime] = None, 1711 metadata: typing.Optional[typing.Any] = None, 1712 level: typing.Optional[SpanLevel] = None, 1713 status_message: typing.Optional[str] = None, 1714 input: typing.Optional[typing.Any] = None, 1715 output: typing.Optional[typing.Any] = None, 1716 version: typing.Optional[str] = None, 1717 **kwargs, 1718 ) -> "StatefulSpanClient": 1719 """Create a span. 1720 1721 A span represents durations of units of work in a trace. 1722 Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1723 1724 If no trace_id is provided, a new trace is created just for this span. 1725 1726 Args: 1727 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 1728 trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated. 1729 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1730 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 1731 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 1732 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 1733 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 1734 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1735 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 1736 input (Optional[dict]): The input to the span. Can be any JSON object. 1737 output (Optional[dict]): The output to the span. Can be any JSON object. 1738 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1739 **kwargs: Additional keyword arguments to include in the span. 1740 1741 Returns: 1742 StatefulSpanClient: The created span. 1743 1744 Example: 1745 ```python 1746 from langfuse import Langfuse 1747 1748 langfuse = Langfuse() 1749 1750 trace = langfuse.trace(name = "llm-feature") 1751 1752 # Create a span 1753 retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) 1754 1755 # Create a nested span 1756 nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id) 1757 ``` 1758 """ 1759 new_span_id = id or str(uuid.uuid4()) 1760 new_trace_id = trace_id or str(uuid.uuid4()) 1761 self.trace_id = new_trace_id 1762 try: 1763 span_body = { 1764 "id": new_span_id, 1765 "trace_id": new_trace_id, 1766 "name": name, 1767 "start_time": start_time or _get_timestamp(), 1768 "metadata": metadata, 1769 "input": input, 1770 "output": output, 1771 "level": level, 1772 "status_message": status_message, 1773 "parent_observation_id": parent_observation_id, 1774 "version": version, 1775 "end_time": end_time, 1776 "trace": {"release": self.release}, 1777 "environment": self.environment, 1778 **kwargs, 1779 } 1780 1781 if trace_id is None: 1782 self._generate_trace(new_trace_id, name or new_trace_id) 1783 1784 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 1785 1786 span_body = CreateSpanBody(**span_body) 1787 1788 event = { 1789 "id": str(uuid.uuid4()), 1790 "type": "span-create", 1791 "body": span_body, 1792 } 1793 1794 self.task_manager.add_task(event) 1795 1796 except Exception as e: 1797 self.log.exception(e) 1798 finally: 1799 self._log_memory_usage() 1800 1801 return StatefulSpanClient( 1802 self.client, 1803 new_span_id, 1804 StateType.OBSERVATION, 1805 new_trace_id, 1806 self.task_manager, 1807 self.environment, 1808 )
Create a span.
A span represents durations of units of work in a trace. Usually, you want to add a span nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id.
If no trace_id is provided, a new trace is created just for this span.
Arguments:
- id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id.
- trace_id (Optional[str]): The trace ID associated with this span. If not provided, a new UUID is generated.
- parent_observation_id (Optional[str]): The ID of the parent observation, if applicable.
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The created span.
Example:
from langfuse import Langfuse langfuse = Langfuse() trace = langfuse.trace(name = "llm-feature") # Create a span retrieval = langfuse.span(name = "retrieval", trace_id = trace.id) # Create a nested span nested_span = langfuse.span(name = "retrieval", trace_id = trace.id, parent_observation_id = retrieval.id)
1810 def event( 1811 self, 1812 *, 1813 id: typing.Optional[str] = None, 1814 trace_id: typing.Optional[str] = None, 1815 parent_observation_id: typing.Optional[str] = None, 1816 name: typing.Optional[str] = None, 1817 start_time: typing.Optional[dt.datetime] = None, 1818 metadata: typing.Optional[typing.Any] = None, 1819 input: typing.Optional[typing.Any] = None, 1820 output: typing.Optional[typing.Any] = None, 1821 level: typing.Optional[SpanLevel] = None, 1822 status_message: typing.Optional[str] = None, 1823 version: typing.Optional[str] = None, 1824 **kwargs, 1825 ) -> "StatefulSpanClient": 1826 """Create an event. 1827 1828 An event represents a discrete event in a trace. 1829 Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1830 1831 If no trace_id is provided, a new trace is created just for this event. 1832 1833 Args: 1834 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 1835 trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event. 1836 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1837 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 1838 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 1839 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 1840 input (Optional[Any]): The input to the event. Can be any JSON object. 1841 output (Optional[Any]): The output to the event. Can be any JSON object. 1842 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1843 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 1844 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 1845 **kwargs: Additional keyword arguments to include in the event. 1846 1847 Returns: 1848 StatefulSpanClient: The created event. 1849 1850 Example: 1851 ```python 1852 from langfuse import Langfuse 1853 1854 langfuse = Langfuse() 1855 1856 trace = langfuse.trace(name = "llm-feature") 1857 1858 # Create an event 1859 retrieval = langfuse.event(name = "retrieval", trace_id = trace.id) 1860 ``` 1861 """ 1862 event_id = id or str(uuid.uuid4()) 1863 new_trace_id = trace_id or str(uuid.uuid4()) 1864 self.trace_id = new_trace_id 1865 try: 1866 event_body = { 1867 "id": event_id, 1868 "trace_id": new_trace_id, 1869 "name": name, 1870 "start_time": start_time or _get_timestamp(), 1871 "metadata": metadata, 1872 "input": input, 1873 "output": output, 1874 "level": level, 1875 "status_message": status_message, 1876 "parent_observation_id": parent_observation_id, 1877 "version": version, 1878 "trace": {"release": self.release}, 1879 "environment": self.environment, 1880 **kwargs, 1881 } 1882 1883 if trace_id is None: 1884 self._generate_trace(new_trace_id, name or new_trace_id) 1885 1886 request = CreateEventBody(**event_body) 1887 1888 event = { 1889 "id": str(uuid.uuid4()), 1890 "type": "event-create", 1891 "body": request, 1892 } 1893 1894 self.log.debug( 1895 f"Creating event {_filter_io_from_event_body(event_body)} ..." 1896 ) 1897 self.task_manager.add_task(event) 1898 1899 except Exception as e: 1900 self.log.exception(e) 1901 finally: 1902 return StatefulSpanClient( 1903 self.client, 1904 event_id, 1905 StateType.OBSERVATION, 1906 new_trace_id, 1907 self.task_manager, 1908 self.environment, 1909 )
Create an event.
An event represents a discrete event in a trace. Usually, you want to add a event nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id.
If no trace_id is provided, a new trace is created just for this event.
Arguments:
- id (Optional[str]): The id of the event can be set, otherwise a random id is generated.
- trace_id (Optional[str]): The trace ID associated with this event. If not provided, a new trace is created just for this event.
- parent_observation_id (Optional[str]): The ID of the parent observation, if applicable.
- name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the event started, defaults to the current time.
- metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API.
- input (Optional[Any]): The input to the event. Can be any JSON object.
- output (Optional[Any]): The output to the event. Can be any JSON object.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the event.
Returns:
StatefulSpanClient: The created event.
Example:
from langfuse import Langfuse langfuse = Langfuse() trace = langfuse.trace(name = "llm-feature") # Create an event retrieval = langfuse.event(name = "retrieval", trace_id = trace.id)
1911 def generation( 1912 self, 1913 *, 1914 id: typing.Optional[str] = None, 1915 trace_id: typing.Optional[str] = None, 1916 parent_observation_id: typing.Optional[str] = None, 1917 name: typing.Optional[str] = None, 1918 start_time: typing.Optional[dt.datetime] = None, 1919 end_time: typing.Optional[dt.datetime] = None, 1920 completion_start_time: typing.Optional[dt.datetime] = None, 1921 metadata: typing.Optional[typing.Any] = None, 1922 level: typing.Optional[SpanLevel] = None, 1923 status_message: typing.Optional[str] = None, 1924 version: typing.Optional[str] = None, 1925 model: typing.Optional[str] = None, 1926 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 1927 input: typing.Optional[typing.Any] = None, 1928 output: typing.Optional[typing.Any] = None, 1929 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 1930 usage_details: typing.Optional[typing.Dict[str, int]] = None, 1931 cost_details: typing.Optional[typing.Dict[str, float]] = None, 1932 prompt: typing.Optional[PromptClient] = None, 1933 **kwargs, 1934 ) -> "StatefulGenerationClient": 1935 """Create a generation. 1936 1937 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 1938 1939 Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id. 1940 1941 If no trace_id is provided, a new trace is created just for this generation. 1942 1943 Args: 1944 id (Optional[str]): The id of the generation can be set, defaults to random id. 1945 trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created 1946 parent_observation_id (Optional[str]): The ID of the parent observation, if applicable. 1947 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 1948 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 1949 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 1950 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 1951 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 1952 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 1953 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 1954 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 1955 model (Optional[str]): The name of the model used for the generation. 1956 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 1957 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 1958 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 1959 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 1960 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 1961 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 1962 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 1963 **kwargs: Additional keyword arguments to include in the generation. 1964 1965 Returns: 1966 StatefulGenerationClient: The created generation. 1967 1968 Example: 1969 ```python 1970 from langfuse import Langfuse 1971 1972 langfuse = Langfuse() 1973 1974 # Create a generation in Langfuse 1975 generation = langfuse.generation( 1976 name="summary-generation", 1977 model="gpt-3.5-turbo", 1978 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 1979 input=[{"role": "system", "content": "You are a helpful assistant."}, 1980 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 1981 metadata={"interface": "whatsapp"} 1982 ) 1983 ``` 1984 """ 1985 new_trace_id = trace_id or str(uuid.uuid4()) 1986 new_generation_id = id or str(uuid.uuid4()) 1987 self.trace_id = new_trace_id 1988 try: 1989 generation_body = { 1990 "id": new_generation_id, 1991 "trace_id": new_trace_id, 1992 "release": self.release, 1993 "name": name, 1994 "start_time": start_time or _get_timestamp(), 1995 "metadata": metadata, 1996 "input": input, 1997 "output": output, 1998 "level": level, 1999 "status_message": status_message, 2000 "parent_observation_id": parent_observation_id, 2001 "version": version, 2002 "end_time": end_time, 2003 "completion_start_time": completion_start_time, 2004 "model": model, 2005 "model_parameters": model_parameters, 2006 "usage": _convert_usage_input(usage) if usage is not None else None, 2007 "usage_details": usage_details, 2008 "cost_details": cost_details, 2009 "trace": {"release": self.release}, 2010 "environment": self.environment, 2011 **_create_prompt_context(prompt), 2012 **kwargs, 2013 } 2014 2015 if trace_id is None: 2016 trace = { 2017 "id": new_trace_id, 2018 "release": self.release, 2019 "name": name, 2020 "environment": self.environment, 2021 } 2022 request = TraceBody(**trace) 2023 2024 event = { 2025 "id": str(uuid.uuid4()), 2026 "type": "trace-create", 2027 "body": request, 2028 } 2029 2030 self.log.debug("Creating trace...") 2031 2032 self.task_manager.add_task(event) 2033 2034 self.log.debug( 2035 f"Creating generation max {_filter_io_from_event_body(generation_body)}..." 2036 ) 2037 request = CreateGenerationBody(**generation_body) 2038 2039 event = { 2040 "id": str(uuid.uuid4()), 2041 "type": "generation-create", 2042 "body": request, 2043 } 2044 2045 self.task_manager.add_task(event) 2046 2047 except Exception as e: 2048 self.log.exception(e) 2049 finally: 2050 return StatefulGenerationClient( 2051 self.client, 2052 new_generation_id, 2053 StateType.OBSERVATION, 2054 new_trace_id, 2055 self.task_manager, 2056 self.environment, 2057 )
Create a generation.
A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI.
Usually, you want to add a generation nested within a trace. Optionally you can nest it within another observation by providing a parent_observation_id.
If no trace_id is provided, a new trace is created just for this generation.
Arguments:
- id (Optional[str]): The id of the generation can be set, defaults to random id.
- trace_id (Optional[str]): The trace ID associated with this generation. If not provided, a new trace is created
- parent_observation_id (Optional[str]): The ID of the parent observation, if applicable.
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by
generation.end()
. - completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The created generation.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a generation in Langfuse generation = langfuse.generation( name="summary-generation", model="gpt-3.5-turbo", model_parameters={"maxTokens": "1000", "temperature": "0.9"}, input=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Please generate a summary of the following documents ..."}], metadata={"interface": "whatsapp"} )
2078 def join(self): 2079 """Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter. 2080 2081 If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. 2082 To guarantee all messages have been delivered, you still need to call flush(). 2083 """ 2084 try: 2085 return self.task_manager.join() 2086 except Exception as e: 2087 self.log.exception(e)
Blocks until all consumer Threads are terminated. The SKD calls this upon termination of the Python Interpreter.
If called before flushing, consumers might terminate before sending all events to Langfuse API. This method is called at exit of the SKD, right before the Python interpreter closes. To guarantee all messages have been delivered, you still need to call flush().
2089 def flush(self): 2090 """Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down. 2091 2092 Example: 2093 ```python 2094 from langfuse import Langfuse 2095 2096 langfuse = Langfuse() 2097 2098 # Some operations with Langfuse 2099 2100 # Flushing all events to end Langfuse cleanly 2101 langfuse.flush() 2102 ``` 2103 """ 2104 try: 2105 return self.task_manager.flush() 2106 except Exception as e: 2107 self.log.exception(e)
Flush the internal event queue to the Langfuse API. It blocks until the queue is empty. It should be called when the application shuts down.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Some operations with Langfuse # Flushing all events to end Langfuse cleanly langfuse.flush()
2109 def shutdown(self): 2110 """Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated. 2111 2112 This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. 2113 As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API. 2114 """ 2115 try: 2116 self.prompt_cache._task_manager.shutdown() 2117 2118 # In logging.py, a handler is attached to the httpx logger. 2119 # To avoid a memory leak on singleton reset, remove all handlers 2120 httpx_logger = logging.getLogger("httpx") 2121 for handler in httpx_logger.handlers: 2122 httpx_logger.removeHandler(handler) 2123 2124 return self.task_manager.shutdown() 2125 except Exception as e: 2126 self.log.exception(e)
Initiate a graceful shutdown of the Langfuse SDK, ensuring all events are sent to Langfuse API and all consumer Threads are terminated.
This function calls flush() and join() consecutively resulting in a complete shutdown of the SDK. On success of this function, no more events will be sent to Langfuse API. As the SDK calls join() already on shutdown, refer to flush() to ensure all events arive at the Langfuse API.
2129class StateType(Enum): 2130 """Enum to distinguish observation and trace states. 2131 2132 Attributes: 2133 OBSERVATION (int): Observation state. 2134 TRACE (int): Trace state. 2135 """ 2136 2137 OBSERVATION = 1 2138 TRACE = 0
Enum to distinguish observation and trace states.
Attributes:
- OBSERVATION (int): Observation state.
- TRACE (int): Trace state.
Inherited Members
- enum.Enum
- name
- value
2141class StatefulClient(object): 2142 """Base class for handling stateful operations in the Langfuse system. 2143 2144 This client is capable of creating different nested Langfuse objects like spans, generations, scores, and events, 2145 associating them with either an observation or a trace based on the specified state type. 2146 2147 Attributes: 2148 client (FernLangfuse): Core interface for Langfuse API interactions. 2149 id (str): Unique identifier of the stateful client (either observation or trace). 2150 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2151 trace_id (str): Id of the trace associated with the stateful client. 2152 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2153 environment (Optional(str)): The tracing environment. 2154 """ 2155 2156 log = logging.getLogger("langfuse") 2157 2158 def __init__( 2159 self, 2160 client: FernLangfuse, 2161 id: str, 2162 state_type: StateType, 2163 trace_id: str, 2164 task_manager: TaskManager, 2165 environment: Optional[str] = None, 2166 ): 2167 """Initialize the StatefulClient. 2168 2169 Args: 2170 client (FernLangfuse): Core interface for Langfuse API interactions. 2171 id (str): Unique identifier of the stateful client (either observation or trace). 2172 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2173 trace_id (str): Id of the trace associated with the stateful client. 2174 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2175 """ 2176 self.client = client 2177 self.trace_id = trace_id 2178 self.id = id 2179 self.state_type = state_type 2180 self.task_manager = task_manager 2181 2182 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 2183 2184 if self.environment and not bool( 2185 re.match(ENVIRONMENT_PATTERN, self.environment) 2186 ): 2187 self.log.warning( 2188 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Setting will be ignored.' 2189 ) 2190 2191 def _add_state_to_event(self, body: dict): 2192 if self.state_type == StateType.OBSERVATION: 2193 body["parent_observation_id"] = self.id 2194 body["trace_id"] = self.trace_id 2195 else: 2196 body["trace_id"] = self.id 2197 return body 2198 2199 def _add_default_values(self, body: dict): 2200 if body.get("start_time") is None: 2201 body["start_time"] = _get_timestamp() 2202 return body 2203 2204 def generation( 2205 self, 2206 *, 2207 id: typing.Optional[str] = None, 2208 name: typing.Optional[str] = None, 2209 start_time: typing.Optional[dt.datetime] = None, 2210 end_time: typing.Optional[dt.datetime] = None, 2211 metadata: typing.Optional[typing.Any] = None, 2212 level: typing.Optional[SpanLevel] = None, 2213 status_message: typing.Optional[str] = None, 2214 version: typing.Optional[str] = None, 2215 completion_start_time: typing.Optional[dt.datetime] = None, 2216 model: typing.Optional[str] = None, 2217 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2218 input: typing.Optional[typing.Any] = None, 2219 output: typing.Optional[typing.Any] = None, 2220 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2221 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2222 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2223 prompt: typing.Optional[PromptClient] = None, 2224 **kwargs, 2225 ) -> "StatefulGenerationClient": 2226 """Create a generation nested within the current observation or trace. 2227 2228 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 2229 2230 Args: 2231 id (Optional[str]): The id of the generation can be set, defaults to random id. 2232 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2233 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2234 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2235 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2236 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2237 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2238 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2239 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2240 model (Optional[str]): The name of the model used for the generation. 2241 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2242 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2243 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2244 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2245 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2246 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2247 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2248 **kwargs: Additional keyword arguments to include in the generation. 2249 2250 Returns: 2251 StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations. 2252 2253 Example: 2254 ```python 2255 from langfuse import Langfuse 2256 2257 langfuse = Langfuse() 2258 2259 # Create a trace 2260 trace = langfuse.trace(name = "llm-feature") 2261 2262 # Create a nested generation in Langfuse 2263 generation = trace.generation( 2264 name="summary-generation", 2265 model="gpt-3.5-turbo", 2266 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 2267 input=[{"role": "system", "content": "You are a helpful assistant."}, 2268 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 2269 metadata={"interface": "whatsapp"} 2270 ) 2271 ``` 2272 """ 2273 generation_id = id or str(uuid.uuid4()) 2274 try: 2275 generation_body = { 2276 "id": generation_id, 2277 "name": name, 2278 "start_time": start_time or _get_timestamp(), 2279 "metadata": metadata, 2280 "level": level, 2281 "status_message": status_message, 2282 "version": version, 2283 "end_time": end_time, 2284 "completion_start_time": completion_start_time, 2285 "model": model, 2286 "model_parameters": model_parameters, 2287 "input": input, 2288 "output": output, 2289 "usage": _convert_usage_input(usage) if usage is not None else None, 2290 "usage_details": usage_details, 2291 "cost_details": cost_details, 2292 "environment": self.environment, 2293 **_create_prompt_context(prompt), 2294 **kwargs, 2295 } 2296 2297 generation_body = self._add_state_to_event(generation_body) 2298 new_body = self._add_default_values(generation_body) 2299 2300 new_body = CreateGenerationBody(**new_body) 2301 2302 event = { 2303 "id": str(uuid.uuid4()), 2304 "type": "generation-create", 2305 "body": new_body.dict(exclude_none=True, exclude_unset=False), 2306 } 2307 2308 self.log.debug( 2309 f"Creating generation {_filter_io_from_event_body(generation_body)}..." 2310 ) 2311 self.task_manager.add_task(event) 2312 2313 except Exception as e: 2314 self.log.exception(e) 2315 finally: 2316 return StatefulGenerationClient( 2317 self.client, 2318 generation_id, 2319 StateType.OBSERVATION, 2320 self.trace_id, 2321 self.task_manager, 2322 self.environment, 2323 ) 2324 2325 def span( 2326 self, 2327 *, 2328 id: typing.Optional[str] = None, 2329 name: typing.Optional[str] = None, 2330 start_time: typing.Optional[dt.datetime] = None, 2331 end_time: typing.Optional[dt.datetime] = None, 2332 metadata: typing.Optional[typing.Any] = None, 2333 input: typing.Optional[typing.Any] = None, 2334 output: typing.Optional[typing.Any] = None, 2335 level: typing.Optional[SpanLevel] = None, 2336 status_message: typing.Optional[str] = None, 2337 version: typing.Optional[str] = None, 2338 **kwargs, 2339 ) -> "StatefulSpanClient": 2340 """Create a span nested within the current observation or trace. 2341 2342 A span represents durations of units of work in a trace. 2343 2344 Args: 2345 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 2346 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2347 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2348 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2349 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2350 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2351 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2352 input (Optional[dict]): The input to the span. Can be any JSON object. 2353 output (Optional[dict]): The output to the span. Can be any JSON object. 2354 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2355 **kwargs: Additional keyword arguments to include in the span. 2356 2357 Returns: 2358 StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations. 2359 2360 Example: 2361 ```python 2362 from langfuse import Langfuse 2363 2364 langfuse = Langfuse() 2365 2366 # Create a trace 2367 trace = langfuse.trace(name = "llm-feature") 2368 2369 # Create a span 2370 retrieval = langfuse.span(name = "retrieval") 2371 ``` 2372 """ 2373 span_id = id or str(uuid.uuid4()) 2374 try: 2375 span_body = { 2376 "id": span_id, 2377 "name": name, 2378 "start_time": start_time or _get_timestamp(), 2379 "metadata": metadata, 2380 "input": input, 2381 "output": output, 2382 "level": level, 2383 "status_message": status_message, 2384 "version": version, 2385 "end_time": end_time, 2386 "environment": self.environment, 2387 **kwargs, 2388 } 2389 2390 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 2391 2392 new_dict = self._add_state_to_event(span_body) 2393 new_body = self._add_default_values(new_dict) 2394 2395 event = CreateSpanBody(**new_body) 2396 2397 event = { 2398 "id": str(uuid.uuid4()), 2399 "type": "span-create", 2400 "body": event, 2401 } 2402 2403 self.task_manager.add_task(event) 2404 except Exception as e: 2405 self.log.exception(e) 2406 finally: 2407 return StatefulSpanClient( 2408 self.client, 2409 span_id, 2410 StateType.OBSERVATION, 2411 self.trace_id, 2412 self.task_manager, 2413 self.environment, 2414 ) 2415 2416 @overload 2417 def score( 2418 self, 2419 *, 2420 id: typing.Optional[str] = None, 2421 name: str, 2422 value: float, 2423 data_type: typing.Optional[Literal["NUMERIC", "BOOLEAN"]] = None, 2424 comment: typing.Optional[str] = None, 2425 config_id: typing.Optional[str] = None, 2426 **kwargs, 2427 ) -> "StatefulClient": ... 2428 2429 @overload 2430 def score( 2431 self, 2432 *, 2433 id: typing.Optional[str] = None, 2434 name: str, 2435 value: str, 2436 data_type: typing.Optional[Literal["CATEGORICAL"]] = "CATEGORICAL", 2437 comment: typing.Optional[str] = None, 2438 config_id: typing.Optional[str] = None, 2439 **kwargs, 2440 ) -> "StatefulClient": ... 2441 2442 def score( 2443 self, 2444 *, 2445 id: typing.Optional[str] = None, 2446 name: str, 2447 value: typing.Union[float, str], 2448 data_type: typing.Optional[ScoreDataType] = None, 2449 comment: typing.Optional[str] = None, 2450 config_id: typing.Optional[str] = None, 2451 **kwargs, 2452 ) -> "StatefulClient": 2453 """Create a score attached for the current observation or trace. 2454 2455 Args: 2456 name (str): Identifier of the score. 2457 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 2458 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 2459 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 2460 comment (Optional[str]): Additional context/explanation of the score. 2461 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 2462 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 2463 **kwargs: Additional keyword arguments to include in the score. 2464 2465 Returns: 2466 StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining. 2467 2468 Example: 2469 ```python 2470 from langfuse import Langfuse 2471 2472 langfuse = Langfuse() 2473 2474 # Create a trace 2475 trace = langfuse.trace(name="example-application") 2476 2477 # Add score to the trace 2478 trace = trace.score( 2479 name="user-explicit-feedback", 2480 value=0.8, 2481 comment="I like how personalized the response is" 2482 ) 2483 ``` 2484 """ 2485 score_id = id or str(uuid.uuid4()) 2486 try: 2487 new_score = { 2488 "id": score_id, 2489 "trace_id": self.trace_id, 2490 "name": name, 2491 "value": value, 2492 "data_type": data_type, 2493 "comment": comment, 2494 "config_id": config_id, 2495 "environment": self.environment, 2496 **kwargs, 2497 } 2498 2499 self.log.debug(f"Creating score {new_score}...") 2500 2501 new_dict = self._add_state_to_event(new_score) 2502 2503 if self.state_type == StateType.OBSERVATION: 2504 new_dict["observationId"] = self.id 2505 2506 request = ScoreBody(**new_dict) 2507 2508 event = { 2509 "id": str(uuid.uuid4()), 2510 "type": "score-create", 2511 "body": request, 2512 } 2513 2514 self.task_manager.add_task(event) 2515 2516 except Exception as e: 2517 self.log.exception(e) 2518 finally: 2519 return StatefulClient( 2520 self.client, 2521 self.id, 2522 self.state_type, 2523 self.trace_id, 2524 self.task_manager, 2525 self.environment, 2526 ) 2527 2528 def event( 2529 self, 2530 *, 2531 id: typing.Optional[str] = None, 2532 name: typing.Optional[str] = None, 2533 start_time: typing.Optional[dt.datetime] = None, 2534 metadata: typing.Optional[typing.Any] = None, 2535 input: typing.Optional[typing.Any] = None, 2536 output: typing.Optional[typing.Any] = None, 2537 level: typing.Optional[SpanLevel] = None, 2538 status_message: typing.Optional[str] = None, 2539 version: typing.Optional[str] = None, 2540 **kwargs, 2541 ) -> "StatefulClient": 2542 """Create an event nested within the current observation or trace. 2543 2544 An event represents a discrete event in a trace. 2545 2546 Args: 2547 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 2548 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 2549 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 2550 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 2551 input (Optional[Any]): The input to the event. Can be any JSON object. 2552 output (Optional[Any]): The output to the event. Can be any JSON object. 2553 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2554 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 2555 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 2556 **kwargs: Additional keyword arguments to include in the event. 2557 2558 Returns: 2559 StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations. 2560 2561 Example: 2562 ```python 2563 from langfuse import Langfuse 2564 2565 langfuse = Langfuse() 2566 2567 # Create a trace 2568 trace = langfuse.trace(name = "llm-feature") 2569 2570 # Create an event 2571 retrieval = trace.event(name = "retrieval") 2572 ``` 2573 """ 2574 event_id = id or str(uuid.uuid4()) 2575 try: 2576 event_body = { 2577 "id": event_id, 2578 "name": name, 2579 "start_time": start_time or _get_timestamp(), 2580 "metadata": metadata, 2581 "input": input, 2582 "output": output, 2583 "level": level, 2584 "status_message": status_message, 2585 "version": version, 2586 "environment": self.environment, 2587 **kwargs, 2588 } 2589 2590 new_dict = self._add_state_to_event(event_body) 2591 new_body = self._add_default_values(new_dict) 2592 2593 request = CreateEventBody(**new_body) 2594 2595 event = { 2596 "id": str(uuid.uuid4()), 2597 "type": "event-create", 2598 "body": request, 2599 } 2600 2601 self.log.debug( 2602 f"Creating event {_filter_io_from_event_body(event_body)}..." 2603 ) 2604 self.task_manager.add_task(event) 2605 2606 except Exception as e: 2607 self.log.exception(e) 2608 finally: 2609 return StatefulClient( 2610 self.client, 2611 event_id, 2612 StateType.OBSERVATION, 2613 self.trace_id, 2614 self.task_manager, 2615 self.environment, 2616 ) 2617 2618 def get_trace_url(self): 2619 """Get the URL to see the current trace in the Langfuse UI.""" 2620 return f"{self.client._client_wrapper._base_url}/trace/{self.trace_id}"
Base class for handling stateful operations in the Langfuse system.
This client is capable of creating different nested Langfuse objects like spans, generations, scores, and events, associating them with either an observation or a trace based on the specified state type.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interactions.
- id (str): Unique identifier of the stateful client (either observation or trace).
- state_type (StateType): Enum indicating whether the client is an observation or a trace.
- trace_id (str): Id of the trace associated with the stateful client.
- task_manager (TaskManager): Manager handling asynchronous tasks for the client.
- environment (Optional(str)): The tracing environment.
2158 def __init__( 2159 self, 2160 client: FernLangfuse, 2161 id: str, 2162 state_type: StateType, 2163 trace_id: str, 2164 task_manager: TaskManager, 2165 environment: Optional[str] = None, 2166 ): 2167 """Initialize the StatefulClient. 2168 2169 Args: 2170 client (FernLangfuse): Core interface for Langfuse API interactions. 2171 id (str): Unique identifier of the stateful client (either observation or trace). 2172 state_type (StateType): Enum indicating whether the client is an observation or a trace. 2173 trace_id (str): Id of the trace associated with the stateful client. 2174 task_manager (TaskManager): Manager handling asynchronous tasks for the client. 2175 """ 2176 self.client = client 2177 self.trace_id = trace_id 2178 self.id = id 2179 self.state_type = state_type 2180 self.task_manager = task_manager 2181 2182 self.environment = environment or os.environ.get("LANGFUSE_TRACING_ENVIRONMENT") 2183 2184 if self.environment and not bool( 2185 re.match(ENVIRONMENT_PATTERN, self.environment) 2186 ): 2187 self.log.warning( 2188 f'Invalid environment specified "{environment}" that does not match validation pattern ("{ENVIRONMENT_PATTERN}"). Setting will be ignored.' 2189 )
Initialize the StatefulClient.
Arguments:
- client (FernLangfuse): Core interface for Langfuse API interactions.
- id (str): Unique identifier of the stateful client (either observation or trace).
- state_type (StateType): Enum indicating whether the client is an observation or a trace.
- trace_id (str): Id of the trace associated with the stateful client.
- task_manager (TaskManager): Manager handling asynchronous tasks for the client.
2204 def generation( 2205 self, 2206 *, 2207 id: typing.Optional[str] = None, 2208 name: typing.Optional[str] = None, 2209 start_time: typing.Optional[dt.datetime] = None, 2210 end_time: typing.Optional[dt.datetime] = None, 2211 metadata: typing.Optional[typing.Any] = None, 2212 level: typing.Optional[SpanLevel] = None, 2213 status_message: typing.Optional[str] = None, 2214 version: typing.Optional[str] = None, 2215 completion_start_time: typing.Optional[dt.datetime] = None, 2216 model: typing.Optional[str] = None, 2217 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2218 input: typing.Optional[typing.Any] = None, 2219 output: typing.Optional[typing.Any] = None, 2220 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2221 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2222 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2223 prompt: typing.Optional[PromptClient] = None, 2224 **kwargs, 2225 ) -> "StatefulGenerationClient": 2226 """Create a generation nested within the current observation or trace. 2227 2228 A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI. 2229 2230 Args: 2231 id (Optional[str]): The id of the generation can be set, defaults to random id. 2232 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2233 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2234 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2235 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2236 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2237 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2238 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2239 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2240 model (Optional[str]): The name of the model used for the generation. 2241 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2242 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2243 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2244 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2245 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2246 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2247 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2248 **kwargs: Additional keyword arguments to include in the generation. 2249 2250 Returns: 2251 StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations. 2252 2253 Example: 2254 ```python 2255 from langfuse import Langfuse 2256 2257 langfuse = Langfuse() 2258 2259 # Create a trace 2260 trace = langfuse.trace(name = "llm-feature") 2261 2262 # Create a nested generation in Langfuse 2263 generation = trace.generation( 2264 name="summary-generation", 2265 model="gpt-3.5-turbo", 2266 model_parameters={"maxTokens": "1000", "temperature": "0.9"}, 2267 input=[{"role": "system", "content": "You are a helpful assistant."}, 2268 {"role": "user", "content": "Please generate a summary of the following documents ..."}], 2269 metadata={"interface": "whatsapp"} 2270 ) 2271 ``` 2272 """ 2273 generation_id = id or str(uuid.uuid4()) 2274 try: 2275 generation_body = { 2276 "id": generation_id, 2277 "name": name, 2278 "start_time": start_time or _get_timestamp(), 2279 "metadata": metadata, 2280 "level": level, 2281 "status_message": status_message, 2282 "version": version, 2283 "end_time": end_time, 2284 "completion_start_time": completion_start_time, 2285 "model": model, 2286 "model_parameters": model_parameters, 2287 "input": input, 2288 "output": output, 2289 "usage": _convert_usage_input(usage) if usage is not None else None, 2290 "usage_details": usage_details, 2291 "cost_details": cost_details, 2292 "environment": self.environment, 2293 **_create_prompt_context(prompt), 2294 **kwargs, 2295 } 2296 2297 generation_body = self._add_state_to_event(generation_body) 2298 new_body = self._add_default_values(generation_body) 2299 2300 new_body = CreateGenerationBody(**new_body) 2301 2302 event = { 2303 "id": str(uuid.uuid4()), 2304 "type": "generation-create", 2305 "body": new_body.dict(exclude_none=True, exclude_unset=False), 2306 } 2307 2308 self.log.debug( 2309 f"Creating generation {_filter_io_from_event_body(generation_body)}..." 2310 ) 2311 self.task_manager.add_task(event) 2312 2313 except Exception as e: 2314 self.log.exception(e) 2315 finally: 2316 return StatefulGenerationClient( 2317 self.client, 2318 generation_id, 2319 StateType.OBSERVATION, 2320 self.trace_id, 2321 self.task_manager, 2322 self.environment, 2323 )
Create a generation nested within the current observation or trace.
A generation is a span that is used to log generations of AI models. They contain additional metadata about the model, the prompt/completion, the cost of executing the model and are specifically rendered in the langfuse UI.
Arguments:
- id (Optional[str]): The id of the generation can be set, defaults to random id.
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by
generation.end()
. - completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The created generation. Use this client to update the generation or create additional nested observations.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested generation in Langfuse generation = trace.generation( name="summary-generation", model="gpt-3.5-turbo", model_parameters={"maxTokens": "1000", "temperature": "0.9"}, input=[{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Please generate a summary of the following documents ..."}], metadata={"interface": "whatsapp"} )
2325 def span( 2326 self, 2327 *, 2328 id: typing.Optional[str] = None, 2329 name: typing.Optional[str] = None, 2330 start_time: typing.Optional[dt.datetime] = None, 2331 end_time: typing.Optional[dt.datetime] = None, 2332 metadata: typing.Optional[typing.Any] = None, 2333 input: typing.Optional[typing.Any] = None, 2334 output: typing.Optional[typing.Any] = None, 2335 level: typing.Optional[SpanLevel] = None, 2336 status_message: typing.Optional[str] = None, 2337 version: typing.Optional[str] = None, 2338 **kwargs, 2339 ) -> "StatefulSpanClient": 2340 """Create a span nested within the current observation or trace. 2341 2342 A span represents durations of units of work in a trace. 2343 2344 Args: 2345 id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id. 2346 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2347 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2348 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2349 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2350 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2351 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2352 input (Optional[dict]): The input to the span. Can be any JSON object. 2353 output (Optional[dict]): The output to the span. Can be any JSON object. 2354 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2355 **kwargs: Additional keyword arguments to include in the span. 2356 2357 Returns: 2358 StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations. 2359 2360 Example: 2361 ```python 2362 from langfuse import Langfuse 2363 2364 langfuse = Langfuse() 2365 2366 # Create a trace 2367 trace = langfuse.trace(name = "llm-feature") 2368 2369 # Create a span 2370 retrieval = langfuse.span(name = "retrieval") 2371 ``` 2372 """ 2373 span_id = id or str(uuid.uuid4()) 2374 try: 2375 span_body = { 2376 "id": span_id, 2377 "name": name, 2378 "start_time": start_time or _get_timestamp(), 2379 "metadata": metadata, 2380 "input": input, 2381 "output": output, 2382 "level": level, 2383 "status_message": status_message, 2384 "version": version, 2385 "end_time": end_time, 2386 "environment": self.environment, 2387 **kwargs, 2388 } 2389 2390 self.log.debug(f"Creating span {_filter_io_from_event_body(span_body)}...") 2391 2392 new_dict = self._add_state_to_event(span_body) 2393 new_body = self._add_default_values(new_dict) 2394 2395 event = CreateSpanBody(**new_body) 2396 2397 event = { 2398 "id": str(uuid.uuid4()), 2399 "type": "span-create", 2400 "body": event, 2401 } 2402 2403 self.task_manager.add_task(event) 2404 except Exception as e: 2405 self.log.exception(e) 2406 finally: 2407 return StatefulSpanClient( 2408 self.client, 2409 span_id, 2410 StateType.OBSERVATION, 2411 self.trace_id, 2412 self.task_manager, 2413 self.environment, 2414 )
Create a span nested within the current observation or trace.
A span represents durations of units of work in a trace.
Arguments:
- id (Optional[str]): The id of the span can be set, otherwise a random id is generated. Spans are upserted on id.
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The created span. Use this client to update the span or create additional nested observations.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a span retrieval = langfuse.span(name = "retrieval")
2442 def score( 2443 self, 2444 *, 2445 id: typing.Optional[str] = None, 2446 name: str, 2447 value: typing.Union[float, str], 2448 data_type: typing.Optional[ScoreDataType] = None, 2449 comment: typing.Optional[str] = None, 2450 config_id: typing.Optional[str] = None, 2451 **kwargs, 2452 ) -> "StatefulClient": 2453 """Create a score attached for the current observation or trace. 2454 2455 Args: 2456 name (str): Identifier of the score. 2457 value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores. 2458 data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. 2459 When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores. 2460 comment (Optional[str]): Additional context/explanation of the score. 2461 id (Optional[str]): The id of the score. If not provided, a new UUID is generated. 2462 config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None. 2463 **kwargs: Additional keyword arguments to include in the score. 2464 2465 Returns: 2466 StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining. 2467 2468 Example: 2469 ```python 2470 from langfuse import Langfuse 2471 2472 langfuse = Langfuse() 2473 2474 # Create a trace 2475 trace = langfuse.trace(name="example-application") 2476 2477 # Add score to the trace 2478 trace = trace.score( 2479 name="user-explicit-feedback", 2480 value=0.8, 2481 comment="I like how personalized the response is" 2482 ) 2483 ``` 2484 """ 2485 score_id = id or str(uuid.uuid4()) 2486 try: 2487 new_score = { 2488 "id": score_id, 2489 "trace_id": self.trace_id, 2490 "name": name, 2491 "value": value, 2492 "data_type": data_type, 2493 "comment": comment, 2494 "config_id": config_id, 2495 "environment": self.environment, 2496 **kwargs, 2497 } 2498 2499 self.log.debug(f"Creating score {new_score}...") 2500 2501 new_dict = self._add_state_to_event(new_score) 2502 2503 if self.state_type == StateType.OBSERVATION: 2504 new_dict["observationId"] = self.id 2505 2506 request = ScoreBody(**new_dict) 2507 2508 event = { 2509 "id": str(uuid.uuid4()), 2510 "type": "score-create", 2511 "body": request, 2512 } 2513 2514 self.task_manager.add_task(event) 2515 2516 except Exception as e: 2517 self.log.exception(e) 2518 finally: 2519 return StatefulClient( 2520 self.client, 2521 self.id, 2522 self.state_type, 2523 self.trace_id, 2524 self.task_manager, 2525 self.environment, 2526 )
Create a score attached for the current observation or trace.
Arguments:
- name (str): Identifier of the score.
- value (Union[float, str]): The value of the score. Should be passed as float for numeric and boolean scores and as string for categorical scores.
- data_type (Optional[ScoreDataType]): The data type of the score. When not set, the data type is inferred from the score config's data type, when present. When no config is set, the data type is inferred from the value's type, i.e. float values are categorized as numeric scores and string values as categorical scores.
- comment (Optional[str]): Additional context/explanation of the score.
- id (Optional[str]): The id of the score. If not provided, a new UUID is generated.
- config_id (Optional[str]): The id of the score config. When set, the score value is validated against the config. Defaults to None.
- **kwargs: Additional keyword arguments to include in the score.
Returns:
StatefulClient: The current observation or trace for which the score was created. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name="example-application") # Add score to the trace trace = trace.score( name="user-explicit-feedback", value=0.8, comment="I like how personalized the response is" )
2528 def event( 2529 self, 2530 *, 2531 id: typing.Optional[str] = None, 2532 name: typing.Optional[str] = None, 2533 start_time: typing.Optional[dt.datetime] = None, 2534 metadata: typing.Optional[typing.Any] = None, 2535 input: typing.Optional[typing.Any] = None, 2536 output: typing.Optional[typing.Any] = None, 2537 level: typing.Optional[SpanLevel] = None, 2538 status_message: typing.Optional[str] = None, 2539 version: typing.Optional[str] = None, 2540 **kwargs, 2541 ) -> "StatefulClient": 2542 """Create an event nested within the current observation or trace. 2543 2544 An event represents a discrete event in a trace. 2545 2546 Args: 2547 id (Optional[str]): The id of the event can be set, otherwise a random id is generated. 2548 name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI. 2549 start_time (Optional[datetime]): The time at which the event started, defaults to the current time. 2550 metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API. 2551 input (Optional[Any]): The input to the event. Can be any JSON object. 2552 output (Optional[Any]): The output to the event. Can be any JSON object. 2553 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2554 status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event. 2555 version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging. 2556 **kwargs: Additional keyword arguments to include in the event. 2557 2558 Returns: 2559 StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations. 2560 2561 Example: 2562 ```python 2563 from langfuse import Langfuse 2564 2565 langfuse = Langfuse() 2566 2567 # Create a trace 2568 trace = langfuse.trace(name = "llm-feature") 2569 2570 # Create an event 2571 retrieval = trace.event(name = "retrieval") 2572 ``` 2573 """ 2574 event_id = id or str(uuid.uuid4()) 2575 try: 2576 event_body = { 2577 "id": event_id, 2578 "name": name, 2579 "start_time": start_time or _get_timestamp(), 2580 "metadata": metadata, 2581 "input": input, 2582 "output": output, 2583 "level": level, 2584 "status_message": status_message, 2585 "version": version, 2586 "environment": self.environment, 2587 **kwargs, 2588 } 2589 2590 new_dict = self._add_state_to_event(event_body) 2591 new_body = self._add_default_values(new_dict) 2592 2593 request = CreateEventBody(**new_body) 2594 2595 event = { 2596 "id": str(uuid.uuid4()), 2597 "type": "event-create", 2598 "body": request, 2599 } 2600 2601 self.log.debug( 2602 f"Creating event {_filter_io_from_event_body(event_body)}..." 2603 ) 2604 self.task_manager.add_task(event) 2605 2606 except Exception as e: 2607 self.log.exception(e) 2608 finally: 2609 return StatefulClient( 2610 self.client, 2611 event_id, 2612 StateType.OBSERVATION, 2613 self.trace_id, 2614 self.task_manager, 2615 self.environment, 2616 )
Create an event nested within the current observation or trace.
An event represents a discrete event in a trace.
Arguments:
- id (Optional[str]): The id of the event can be set, otherwise a random id is generated.
- name (Optional[str]): Identifier of the event. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the event started, defaults to the current time.
- metadata (Optional[Any]): Additional metadata of the event. Can be any JSON object. Metadata is merged when being updated via the API.
- input (Optional[Any]): The input to the event. Can be any JSON object.
- output (Optional[Any]): The output to the event. Can be any JSON object.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the event. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the event. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the event type. Used to understand how changes to the event type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the event.
Returns:
StatefulSpanClient: The created event. Use this client to update the event or create additional nested observations.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create an event retrieval = trace.event(name = "retrieval")
2623class StatefulGenerationClient(StatefulClient): 2624 """Class for handling stateful operations of generations in the Langfuse system. Inherits from StatefulClient. 2625 2626 This client extends the capabilities of the StatefulClient to specifically handle generation, 2627 allowing for the creation, update, and termination of generation processes in Langfuse. 2628 2629 Attributes: 2630 client (FernLangfuse): Core interface for Langfuse API interaction. 2631 id (str): Unique identifier of the generation. 2632 state_type (StateType): Type of the stateful entity (observation or trace). 2633 trace_id (str): Id of trace associated with the generation. 2634 task_manager (TaskManager): Manager for handling asynchronous tasks. 2635 """ 2636 2637 log = logging.getLogger("langfuse") 2638 2639 def __init__( 2640 self, 2641 client: FernLangfuse, 2642 id: str, 2643 state_type: StateType, 2644 trace_id: str, 2645 task_manager: TaskManager, 2646 environment: Optional[str] = None, 2647 ): 2648 """Initialize the StatefulGenerationClient.""" 2649 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2650 2651 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2652 def update( 2653 self, 2654 *, 2655 name: typing.Optional[str] = None, 2656 start_time: typing.Optional[dt.datetime] = None, 2657 end_time: typing.Optional[dt.datetime] = None, 2658 completion_start_time: typing.Optional[dt.datetime] = None, 2659 metadata: typing.Optional[typing.Any] = None, 2660 level: typing.Optional[SpanLevel] = None, 2661 status_message: typing.Optional[str] = None, 2662 version: typing.Optional[str] = None, 2663 model: typing.Optional[str] = None, 2664 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2665 input: typing.Optional[typing.Any] = None, 2666 output: typing.Optional[typing.Any] = None, 2667 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2668 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2669 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2670 prompt: typing.Optional[PromptClient] = None, 2671 **kwargs, 2672 ) -> "StatefulGenerationClient": 2673 """Update the generation. 2674 2675 Args: 2676 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2677 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2678 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2679 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2680 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2681 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2682 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2683 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2684 model (Optional[str]): The name of the model used for the generation. 2685 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2686 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2687 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2688 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2689 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2690 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2691 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2692 **kwargs: Additional keyword arguments to include in the generation. 2693 2694 Returns: 2695 StatefulGenerationClient: The updated generation. Passthrough for chaining. 2696 2697 Example: 2698 ```python 2699 from langfuse import Langfuse 2700 2701 langfuse = Langfuse() 2702 2703 # Create a trace 2704 trace = langfuse.trace(name = "llm-feature") 2705 2706 # Create a nested generation in Langfuse 2707 generation = trace.generation(name="summary-generation") 2708 2709 # Update the generation 2710 generation = generation.update(metadata={"interface": "whatsapp"}) 2711 ``` 2712 """ 2713 try: 2714 generation_body = { 2715 "id": self.id, 2716 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2717 "name": name, 2718 "start_time": start_time, 2719 "metadata": metadata, 2720 "level": level, 2721 "status_message": status_message, 2722 "version": version, 2723 "end_time": end_time, 2724 "completion_start_time": completion_start_time, 2725 "model": model, 2726 "model_parameters": model_parameters, 2727 "input": input, 2728 "output": output, 2729 "usage": _convert_usage_input(usage) if usage is not None else None, 2730 "usage_details": usage_details, 2731 "cost_details": cost_details, 2732 **_create_prompt_context(prompt), 2733 **kwargs, 2734 } 2735 2736 self.log.debug( 2737 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2738 ) 2739 2740 request = UpdateGenerationBody(**generation_body) 2741 2742 event = { 2743 "id": str(uuid.uuid4()), 2744 "type": "generation-update", 2745 "body": request.dict(exclude_none=True, exclude_unset=False), 2746 } 2747 2748 self.log.debug( 2749 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2750 ) 2751 self.task_manager.add_task(event) 2752 2753 except Exception as e: 2754 self.log.exception(e) 2755 finally: 2756 return StatefulGenerationClient( 2757 self.client, 2758 self.id, 2759 StateType.OBSERVATION, 2760 self.trace_id, 2761 self.task_manager, 2762 self.environment, 2763 ) 2764 2765 def end( 2766 self, 2767 *, 2768 name: typing.Optional[str] = None, 2769 start_time: typing.Optional[dt.datetime] = None, 2770 end_time: typing.Optional[dt.datetime] = None, 2771 completion_start_time: typing.Optional[dt.datetime] = None, 2772 metadata: typing.Optional[typing.Any] = None, 2773 level: typing.Optional[SpanLevel] = None, 2774 status_message: typing.Optional[str] = None, 2775 version: typing.Optional[str] = None, 2776 model: typing.Optional[str] = None, 2777 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2778 input: typing.Optional[typing.Any] = None, 2779 output: typing.Optional[typing.Any] = None, 2780 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2781 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2782 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2783 prompt: typing.Optional[PromptClient] = None, 2784 **kwargs, 2785 ) -> "StatefulGenerationClient": 2786 """End the generation, optionally updating its properties. 2787 2788 Args: 2789 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2790 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2791 end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time. 2792 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2793 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2794 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2795 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2796 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2797 model (Optional[str]): The name of the model used for the generation. 2798 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2799 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2800 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2801 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2802 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2803 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2804 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2805 **kwargs: Additional keyword arguments to include in the generation. 2806 2807 Returns: 2808 StatefulGenerationClient: The ended generation. Passthrough for chaining. 2809 2810 Example: 2811 ```python 2812 from langfuse import Langfuse 2813 2814 langfuse = Langfuse() 2815 2816 # Create a trace 2817 trace = langfuse.trace(name = "llm-feature") 2818 2819 # Create a nested generation in Langfuse 2820 generation = trace.generation(name="summary-generation") 2821 2822 # End the generation and update its properties 2823 generation = generation.end(metadata={"interface": "whatsapp"}) 2824 ``` 2825 """ 2826 return self.update( 2827 name=name, 2828 start_time=start_time, 2829 end_time=end_time or _get_timestamp(), 2830 metadata=metadata, 2831 level=level, 2832 status_message=status_message, 2833 version=version, 2834 completion_start_time=completion_start_time, 2835 model=model, 2836 model_parameters=model_parameters, 2837 input=input, 2838 output=output, 2839 usage=usage, 2840 usage_details=usage_details, 2841 cost_details=cost_details, 2842 prompt=prompt, 2843 **kwargs, 2844 )
Class for handling stateful operations of generations in the Langfuse system. Inherits from StatefulClient.
This client extends the capabilities of the StatefulClient to specifically handle generation, allowing for the creation, update, and termination of generation processes in Langfuse.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interaction.
- id (str): Unique identifier of the generation.
- state_type (StateType): Type of the stateful entity (observation or trace).
- trace_id (str): Id of trace associated with the generation.
- task_manager (TaskManager): Manager for handling asynchronous tasks.
2639 def __init__( 2640 self, 2641 client: FernLangfuse, 2642 id: str, 2643 state_type: StateType, 2644 trace_id: str, 2645 task_manager: TaskManager, 2646 environment: Optional[str] = None, 2647 ): 2648 """Initialize the StatefulGenerationClient.""" 2649 super().__init__(client, id, state_type, trace_id, task_manager, environment)
Initialize the StatefulGenerationClient.
2652 def update( 2653 self, 2654 *, 2655 name: typing.Optional[str] = None, 2656 start_time: typing.Optional[dt.datetime] = None, 2657 end_time: typing.Optional[dt.datetime] = None, 2658 completion_start_time: typing.Optional[dt.datetime] = None, 2659 metadata: typing.Optional[typing.Any] = None, 2660 level: typing.Optional[SpanLevel] = None, 2661 status_message: typing.Optional[str] = None, 2662 version: typing.Optional[str] = None, 2663 model: typing.Optional[str] = None, 2664 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2665 input: typing.Optional[typing.Any] = None, 2666 output: typing.Optional[typing.Any] = None, 2667 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2668 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2669 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2670 prompt: typing.Optional[PromptClient] = None, 2671 **kwargs, 2672 ) -> "StatefulGenerationClient": 2673 """Update the generation. 2674 2675 Args: 2676 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2677 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2678 end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by `generation.end()`. 2679 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2680 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2681 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2682 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2683 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2684 model (Optional[str]): The name of the model used for the generation. 2685 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2686 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2687 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2688 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2689 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2690 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2691 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2692 **kwargs: Additional keyword arguments to include in the generation. 2693 2694 Returns: 2695 StatefulGenerationClient: The updated generation. Passthrough for chaining. 2696 2697 Example: 2698 ```python 2699 from langfuse import Langfuse 2700 2701 langfuse = Langfuse() 2702 2703 # Create a trace 2704 trace = langfuse.trace(name = "llm-feature") 2705 2706 # Create a nested generation in Langfuse 2707 generation = trace.generation(name="summary-generation") 2708 2709 # Update the generation 2710 generation = generation.update(metadata={"interface": "whatsapp"}) 2711 ``` 2712 """ 2713 try: 2714 generation_body = { 2715 "id": self.id, 2716 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2717 "name": name, 2718 "start_time": start_time, 2719 "metadata": metadata, 2720 "level": level, 2721 "status_message": status_message, 2722 "version": version, 2723 "end_time": end_time, 2724 "completion_start_time": completion_start_time, 2725 "model": model, 2726 "model_parameters": model_parameters, 2727 "input": input, 2728 "output": output, 2729 "usage": _convert_usage_input(usage) if usage is not None else None, 2730 "usage_details": usage_details, 2731 "cost_details": cost_details, 2732 **_create_prompt_context(prompt), 2733 **kwargs, 2734 } 2735 2736 self.log.debug( 2737 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2738 ) 2739 2740 request = UpdateGenerationBody(**generation_body) 2741 2742 event = { 2743 "id": str(uuid.uuid4()), 2744 "type": "generation-update", 2745 "body": request.dict(exclude_none=True, exclude_unset=False), 2746 } 2747 2748 self.log.debug( 2749 f"Update generation {_filter_io_from_event_body(generation_body)}..." 2750 ) 2751 self.task_manager.add_task(event) 2752 2753 except Exception as e: 2754 self.log.exception(e) 2755 finally: 2756 return StatefulGenerationClient( 2757 self.client, 2758 self.id, 2759 StateType.OBSERVATION, 2760 self.trace_id, 2761 self.task_manager, 2762 self.environment, 2763 )
Update the generation.
Arguments:
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): The time at which the generation ended. Automatically set by
generation.end()
. - completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The updated generation. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested generation in Langfuse generation = trace.generation(name="summary-generation") # Update the generation generation = generation.update(metadata={"interface": "whatsapp"})
2765 def end( 2766 self, 2767 *, 2768 name: typing.Optional[str] = None, 2769 start_time: typing.Optional[dt.datetime] = None, 2770 end_time: typing.Optional[dt.datetime] = None, 2771 completion_start_time: typing.Optional[dt.datetime] = None, 2772 metadata: typing.Optional[typing.Any] = None, 2773 level: typing.Optional[SpanLevel] = None, 2774 status_message: typing.Optional[str] = None, 2775 version: typing.Optional[str] = None, 2776 model: typing.Optional[str] = None, 2777 model_parameters: typing.Optional[typing.Dict[str, MapValue]] = None, 2778 input: typing.Optional[typing.Any] = None, 2779 output: typing.Optional[typing.Any] = None, 2780 usage: typing.Optional[typing.Union[pydantic.BaseModel, ModelUsage]] = None, 2781 usage_details: typing.Optional[typing.Dict[str, int]] = None, 2782 cost_details: typing.Optional[typing.Dict[str, float]] = None, 2783 prompt: typing.Optional[PromptClient] = None, 2784 **kwargs, 2785 ) -> "StatefulGenerationClient": 2786 """End the generation, optionally updating its properties. 2787 2788 Args: 2789 name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI. 2790 start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time. 2791 end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time. 2792 completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration. 2793 metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API. 2794 level (Optional[str]): The level of the generation. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2795 status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event. 2796 version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2797 model (Optional[str]): The name of the model used for the generation. 2798 model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs. 2799 input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object. 2800 output (Optional[dict]): The completion generated by the model. Can be any string or JSON object. 2801 usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {`promptTokens`, `completionTokens`, `totalTokens`} and a more generic version {`input`, `output`, `total`, `unit`, `inputCost`, `outputCost`, `totalCost`} where unit can be of value `"TOKENS"`, `"CHARACTERS"`, `"MILLISECONDS"`, `"SECONDS"`, or `"IMAGES"`. Refer to the docs on how to [automatically infer](https://langfuse.com/docs/model-usage-and-cost) token usage and costs in Langfuse. 2802 usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}. 2803 cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}. 2804 prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation. 2805 **kwargs: Additional keyword arguments to include in the generation. 2806 2807 Returns: 2808 StatefulGenerationClient: The ended generation. Passthrough for chaining. 2809 2810 Example: 2811 ```python 2812 from langfuse import Langfuse 2813 2814 langfuse = Langfuse() 2815 2816 # Create a trace 2817 trace = langfuse.trace(name = "llm-feature") 2818 2819 # Create a nested generation in Langfuse 2820 generation = trace.generation(name="summary-generation") 2821 2822 # End the generation and update its properties 2823 generation = generation.end(metadata={"interface": "whatsapp"}) 2824 ``` 2825 """ 2826 return self.update( 2827 name=name, 2828 start_time=start_time, 2829 end_time=end_time or _get_timestamp(), 2830 metadata=metadata, 2831 level=level, 2832 status_message=status_message, 2833 version=version, 2834 completion_start_time=completion_start_time, 2835 model=model, 2836 model_parameters=model_parameters, 2837 input=input, 2838 output=output, 2839 usage=usage, 2840 usage_details=usage_details, 2841 cost_details=cost_details, 2842 prompt=prompt, 2843 **kwargs, 2844 )
End the generation, optionally updating its properties.
Arguments:
- name (Optional[str]): Identifier of the generation. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime.datetime]): The time at which the generation started, defaults to the current time.
- end_time (Optional[datetime.datetime]): Automatically set to the current time. Can be overridden to set a custom end time.
- completion_start_time (Optional[datetime.datetime]): The time at which the completion started (streaming). Set it to get latency analytics broken down into time until completion started and completion duration.
- metadata (Optional[dict]): Additional metadata of the generation. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[str]): The level of the generation. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the generation. Additional field for context of the event. E.g. the error message of an error event.
- version (Optional[str]): The version of the generation type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- model (Optional[str]): The name of the model used for the generation.
- model_parameters (Optional[dict]): The parameters of the model used for the generation; can be any key-value pairs.
- input (Optional[dict]): The prompt used for the generation. Can be any string or JSON object.
- output (Optional[dict]): The completion generated by the model. Can be any string or JSON object.
- usage (Optional[dict]): [DEPRECATED, use usage_details and cost_details instead] The usage object supports the OpenAi structure with {
promptTokens
,completionTokens
,totalTokens
} and a more generic version {input
,output
,total
,unit
,inputCost
,outputCost
,totalCost
} where unit can be of value"TOKENS"
,"CHARACTERS"
,"MILLISECONDS"
,"SECONDS"
, or"IMAGES"
. Refer to the docs on how to automatically infer token usage and costs in Langfuse. - usage_details (Optional[dict]): The usage details of the generation. Also accepts OpenAI usage details. Keys are the usage type (e.g. "input", "input_cached", "output") and values are integers representing the number of units used. For accurate cost calculations in Langfuse, ensure each usage type has a corresponding price configured in the Langfuse models table. Example: {"input": 500, "output": 150}.
- cost_details (Optional[dict]): The cost details of the generation. Keys are the usage type (e.g. "input", "input_cached", "output") and values are floats representing the cost in USD. Example: {"input": 0.0015, "output": 0.002}.
- prompt (Optional[PromptClient]): The Langfuse prompt object used for the generation.
- **kwargs: Additional keyword arguments to include in the generation.
Returns:
StatefulGenerationClient: The ended generation. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested generation in Langfuse generation = trace.generation(name="summary-generation") # End the generation and update its properties generation = generation.end(metadata={"interface": "whatsapp"})
Inherited Members
2847class StatefulSpanClient(StatefulClient): 2848 """Class for handling stateful operations of spans in the Langfuse system. Inherits from StatefulClient. 2849 2850 Attributes: 2851 client (FernLangfuse): Core interface for Langfuse API interaction. 2852 id (str): Unique identifier of the span. 2853 state_type (StateType): Type of the stateful entity (observation or trace). 2854 trace_id (str): Id of trace associated with the span. 2855 task_manager (TaskManager): Manager for handling asynchronous tasks. 2856 """ 2857 2858 log = logging.getLogger("langfuse") 2859 2860 def __init__( 2861 self, 2862 client: FernLangfuse, 2863 id: str, 2864 state_type: StateType, 2865 trace_id: str, 2866 task_manager: TaskManager, 2867 environment: Optional[str] = None, 2868 ): 2869 """Initialize the StatefulSpanClient.""" 2870 super().__init__(client, id, state_type, trace_id, task_manager, environment) 2871 2872 # WHEN CHANGING THIS METHOD, UPDATE END() FUNCTION ACCORDINGLY 2873 def update( 2874 self, 2875 *, 2876 name: typing.Optional[str] = None, 2877 start_time: typing.Optional[dt.datetime] = None, 2878 end_time: typing.Optional[dt.datetime] = None, 2879 metadata: typing.Optional[typing.Any] = None, 2880 input: typing.Optional[typing.Any] = None, 2881 output: typing.Optional[typing.Any] = None, 2882 level: typing.Optional[SpanLevel] = None, 2883 status_message: typing.Optional[str] = None, 2884 version: typing.Optional[str] = None, 2885 **kwargs, 2886 ) -> "StatefulSpanClient": 2887 """Update the span. 2888 2889 Args: 2890 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2891 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2892 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2893 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2894 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2895 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2896 input (Optional[dict]): The input to the span. Can be any JSON object. 2897 output (Optional[dict]): The output to the span. Can be any JSON object. 2898 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2899 **kwargs: Additional keyword arguments to include in the span. 2900 2901 Returns: 2902 StatefulSpanClient: The updated span. Passthrough for chaining. 2903 2904 Example: 2905 ```python 2906 from langfuse import Langfuse 2907 2908 langfuse = Langfuse() 2909 2910 # Create a trace 2911 trace = langfuse.trace(name = "llm-feature") 2912 2913 # Create a nested span in Langfuse 2914 span = trace.span(name="retrieval") 2915 2916 # Update the span 2917 span = span.update(metadata={"interface": "whatsapp"}) 2918 ``` 2919 """ 2920 try: 2921 span_body = { 2922 "id": self.id, 2923 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2924 "name": name, 2925 "start_time": start_time, 2926 "metadata": metadata, 2927 "input": input, 2928 "output": output, 2929 "level": level, 2930 "status_message": status_message, 2931 "version": version, 2932 "end_time": end_time, 2933 **kwargs, 2934 } 2935 self.log.debug(f"Update span {_filter_io_from_event_body(span_body)}...") 2936 2937 request = UpdateSpanBody(**span_body) 2938 2939 event = { 2940 "id": str(uuid.uuid4()), 2941 "type": "span-update", 2942 "body": request, 2943 } 2944 2945 self.task_manager.add_task(event) 2946 except Exception as e: 2947 self.log.exception(e) 2948 finally: 2949 return StatefulSpanClient( 2950 self.client, 2951 self.id, 2952 StateType.OBSERVATION, 2953 self.trace_id, 2954 self.task_manager, 2955 self.environment, 2956 ) 2957 2958 def end( 2959 self, 2960 *, 2961 name: typing.Optional[str] = None, 2962 start_time: typing.Optional[dt.datetime] = None, 2963 end_time: typing.Optional[dt.datetime] = None, 2964 metadata: typing.Optional[typing.Any] = None, 2965 input: typing.Optional[typing.Any] = None, 2966 output: typing.Optional[typing.Any] = None, 2967 level: typing.Optional[SpanLevel] = None, 2968 status_message: typing.Optional[str] = None, 2969 version: typing.Optional[str] = None, 2970 **kwargs, 2971 ) -> "StatefulSpanClient": 2972 """End the span, optionally updating its properties. 2973 2974 Args: 2975 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2976 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2977 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2978 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2979 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2980 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2981 input (Optional[dict]): The input to the span. Can be any JSON object. 2982 output (Optional[dict]): The output to the span. Can be any JSON object. 2983 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2984 **kwargs: Additional keyword arguments to include in the span. 2985 2986 Returns: 2987 StatefulSpanClient: The updated span. Passthrough for chaining. 2988 2989 Example: 2990 ```python 2991 from langfuse import Langfuse 2992 2993 langfuse = Langfuse() 2994 2995 # Create a trace 2996 trace = langfuse.trace(name = "llm-feature") 2997 2998 # Create a nested span in Langfuse 2999 span = trace.span(name="retrieval") 3000 3001 # End the span and update its properties 3002 span = span.end(metadata={"interface": "whatsapp"}) 3003 ``` 3004 """ 3005 try: 3006 span_body = { 3007 "name": name, 3008 "start_time": start_time, 3009 "metadata": metadata, 3010 "input": input, 3011 "output": output, 3012 "level": level, 3013 "status_message": status_message, 3014 "version": version, 3015 "end_time": end_time or _get_timestamp(), 3016 **kwargs, 3017 } 3018 return self.update(**span_body) 3019 3020 except Exception as e: 3021 self.log.warning(e) 3022 finally: 3023 return StatefulSpanClient( 3024 self.client, 3025 self.id, 3026 StateType.OBSERVATION, 3027 self.trace_id, 3028 self.task_manager, 3029 self.environment, 3030 ) 3031 3032 def get_langchain_handler(self, update_parent: bool = False): 3033 """Get langchain callback handler associated with the current span. 3034 3035 Args: 3036 update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run. 3037 3038 Returns: 3039 CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient. 3040 """ 3041 from langfuse.callback import CallbackHandler 3042 3043 return CallbackHandler( 3044 stateful_client=self, update_stateful_client=update_parent 3045 )
Class for handling stateful operations of spans in the Langfuse system. Inherits from StatefulClient.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interaction.
- id (str): Unique identifier of the span.
- state_type (StateType): Type of the stateful entity (observation or trace).
- trace_id (str): Id of trace associated with the span.
- task_manager (TaskManager): Manager for handling asynchronous tasks.
2860 def __init__( 2861 self, 2862 client: FernLangfuse, 2863 id: str, 2864 state_type: StateType, 2865 trace_id: str, 2866 task_manager: TaskManager, 2867 environment: Optional[str] = None, 2868 ): 2869 """Initialize the StatefulSpanClient.""" 2870 super().__init__(client, id, state_type, trace_id, task_manager, environment)
Initialize the StatefulSpanClient.
2873 def update( 2874 self, 2875 *, 2876 name: typing.Optional[str] = None, 2877 start_time: typing.Optional[dt.datetime] = None, 2878 end_time: typing.Optional[dt.datetime] = None, 2879 metadata: typing.Optional[typing.Any] = None, 2880 input: typing.Optional[typing.Any] = None, 2881 output: typing.Optional[typing.Any] = None, 2882 level: typing.Optional[SpanLevel] = None, 2883 status_message: typing.Optional[str] = None, 2884 version: typing.Optional[str] = None, 2885 **kwargs, 2886 ) -> "StatefulSpanClient": 2887 """Update the span. 2888 2889 Args: 2890 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2891 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2892 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2893 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2894 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2895 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2896 input (Optional[dict]): The input to the span. Can be any JSON object. 2897 output (Optional[dict]): The output to the span. Can be any JSON object. 2898 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2899 **kwargs: Additional keyword arguments to include in the span. 2900 2901 Returns: 2902 StatefulSpanClient: The updated span. Passthrough for chaining. 2903 2904 Example: 2905 ```python 2906 from langfuse import Langfuse 2907 2908 langfuse = Langfuse() 2909 2910 # Create a trace 2911 trace = langfuse.trace(name = "llm-feature") 2912 2913 # Create a nested span in Langfuse 2914 span = trace.span(name="retrieval") 2915 2916 # Update the span 2917 span = span.update(metadata={"interface": "whatsapp"}) 2918 ``` 2919 """ 2920 try: 2921 span_body = { 2922 "id": self.id, 2923 "trace_id": self.trace_id, # Included to avoid relying on the order of events sent to the API 2924 "name": name, 2925 "start_time": start_time, 2926 "metadata": metadata, 2927 "input": input, 2928 "output": output, 2929 "level": level, 2930 "status_message": status_message, 2931 "version": version, 2932 "end_time": end_time, 2933 **kwargs, 2934 } 2935 self.log.debug(f"Update span {_filter_io_from_event_body(span_body)}...") 2936 2937 request = UpdateSpanBody(**span_body) 2938 2939 event = { 2940 "id": str(uuid.uuid4()), 2941 "type": "span-update", 2942 "body": request, 2943 } 2944 2945 self.task_manager.add_task(event) 2946 except Exception as e: 2947 self.log.exception(e) 2948 finally: 2949 return StatefulSpanClient( 2950 self.client, 2951 self.id, 2952 StateType.OBSERVATION, 2953 self.trace_id, 2954 self.task_manager, 2955 self.environment, 2956 )
Update the span.
Arguments:
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The updated span. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested span in Langfuse span = trace.span(name="retrieval") # Update the span span = span.update(metadata={"interface": "whatsapp"})
2958 def end( 2959 self, 2960 *, 2961 name: typing.Optional[str] = None, 2962 start_time: typing.Optional[dt.datetime] = None, 2963 end_time: typing.Optional[dt.datetime] = None, 2964 metadata: typing.Optional[typing.Any] = None, 2965 input: typing.Optional[typing.Any] = None, 2966 output: typing.Optional[typing.Any] = None, 2967 level: typing.Optional[SpanLevel] = None, 2968 status_message: typing.Optional[str] = None, 2969 version: typing.Optional[str] = None, 2970 **kwargs, 2971 ) -> "StatefulSpanClient": 2972 """End the span, optionally updating its properties. 2973 2974 Args: 2975 name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI. 2976 start_time (Optional[datetime]): The time at which the span started, defaults to the current time. 2977 end_time (Optional[datetime]): The time at which the span ended. Automatically set by `span.end()`. 2978 metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API. 2979 level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be `DEBUG`, `DEFAULT`, `WARNING` or `ERROR`. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. 2980 status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event. 2981 input (Optional[dict]): The input to the span. Can be any JSON object. 2982 output (Optional[dict]): The output to the span. Can be any JSON object. 2983 version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging. 2984 **kwargs: Additional keyword arguments to include in the span. 2985 2986 Returns: 2987 StatefulSpanClient: The updated span. Passthrough for chaining. 2988 2989 Example: 2990 ```python 2991 from langfuse import Langfuse 2992 2993 langfuse = Langfuse() 2994 2995 # Create a trace 2996 trace = langfuse.trace(name = "llm-feature") 2997 2998 # Create a nested span in Langfuse 2999 span = trace.span(name="retrieval") 3000 3001 # End the span and update its properties 3002 span = span.end(metadata={"interface": "whatsapp"}) 3003 ``` 3004 """ 3005 try: 3006 span_body = { 3007 "name": name, 3008 "start_time": start_time, 3009 "metadata": metadata, 3010 "input": input, 3011 "output": output, 3012 "level": level, 3013 "status_message": status_message, 3014 "version": version, 3015 "end_time": end_time or _get_timestamp(), 3016 **kwargs, 3017 } 3018 return self.update(**span_body) 3019 3020 except Exception as e: 3021 self.log.warning(e) 3022 finally: 3023 return StatefulSpanClient( 3024 self.client, 3025 self.id, 3026 StateType.OBSERVATION, 3027 self.trace_id, 3028 self.task_manager, 3029 self.environment, 3030 )
End the span, optionally updating its properties.
Arguments:
- name (Optional[str]): Identifier of the span. Useful for sorting/filtering in the UI.
- start_time (Optional[datetime]): The time at which the span started, defaults to the current time.
- end_time (Optional[datetime]): The time at which the span ended. Automatically set by
span.end()
. - metadata (Optional[dict]): Additional metadata of the span. Can be any JSON object. Metadata is merged when being updated via the API.
- level (Optional[Literal["DEBUG", "DEFAULT", "WARNING", "ERROR"]]): The level of the span. Can be
DEBUG
,DEFAULT
,WARNING
orERROR
. Used for sorting/filtering of traces with elevated error levels and for highlighting in the UI. - status_message (Optional[str]): The status message of the span. Additional field for context of the event. E.g. the error message of an error event.
- input (Optional[dict]): The input to the span. Can be any JSON object.
- output (Optional[dict]): The output to the span. Can be any JSON object.
- version (Optional[str]): The version of the span type. Used to understand how changes to the span type affect metrics. Useful in debugging.
- **kwargs: Additional keyword arguments to include in the span.
Returns:
StatefulSpanClient: The updated span. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Create a nested span in Langfuse span = trace.span(name="retrieval") # End the span and update its properties span = span.end(metadata={"interface": "whatsapp"})
3032 def get_langchain_handler(self, update_parent: bool = False): 3033 """Get langchain callback handler associated with the current span. 3034 3035 Args: 3036 update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run. 3037 3038 Returns: 3039 CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient. 3040 """ 3041 from langfuse.callback import CallbackHandler 3042 3043 return CallbackHandler( 3044 stateful_client=self, update_stateful_client=update_parent 3045 )
Get langchain callback handler associated with the current span.
Arguments:
- update_parent (bool): If set to True, the parent observation will be updated with the outcome of the Langchain run.
Returns:
CallbackHandler: An instance of CallbackHandler linked to this StatefulSpanClient.
Inherited Members
3048class StatefulTraceClient(StatefulClient): 3049 """Class for handling stateful operations of traces in the Langfuse system. Inherits from StatefulClient. 3050 3051 Attributes: 3052 client (FernLangfuse): Core interface for Langfuse API interaction. 3053 id (str): Unique identifier of the trace. 3054 state_type (StateType): Type of the stateful entity (observation or trace). 3055 trace_id (str): The trace ID associated with this client. 3056 task_manager (TaskManager): Manager for handling asynchronous tasks. 3057 """ 3058 3059 log = logging.getLogger("langfuse") 3060 3061 def __init__( 3062 self, 3063 client: FernLangfuse, 3064 id: str, 3065 state_type: StateType, 3066 trace_id: str, 3067 task_manager: TaskManager, 3068 environment: Optional[str] = None, 3069 ): 3070 """Initialize the StatefulTraceClient.""" 3071 super().__init__(client, id, state_type, trace_id, task_manager, environment) 3072 self.task_manager = task_manager 3073 3074 def update( 3075 self, 3076 *, 3077 name: typing.Optional[str] = None, 3078 user_id: typing.Optional[str] = None, 3079 session_id: typing.Optional[str] = None, 3080 version: typing.Optional[str] = None, 3081 release: typing.Optional[str] = None, 3082 input: typing.Optional[typing.Any] = None, 3083 output: typing.Optional[typing.Any] = None, 3084 metadata: typing.Optional[typing.Any] = None, 3085 tags: typing.Optional[typing.List[str]] = None, 3086 public: typing.Optional[bool] = None, 3087 **kwargs, 3088 ) -> "StatefulTraceClient": 3089 """Update the trace. 3090 3091 Args: 3092 name: Identifier of the trace. Useful for sorting/filtering in the UI. 3093 input: The input of the trace. Can be any JSON object. 3094 output: The output of the trace. Can be any JSON object. 3095 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 3096 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 3097 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 3098 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 3099 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 3100 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 3101 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 3102 **kwargs: Additional keyword arguments that can be included in the trace. 3103 3104 Returns: 3105 StatefulTraceClient: The updated trace. Passthrough for chaining. 3106 3107 Example: 3108 ```python 3109 from langfuse import Langfuse 3110 3111 langfuse = Langfuse() 3112 3113 # Create a trace 3114 trace = langfuse.trace( 3115 name="example-application", 3116 user_id="user-1234") 3117 ) 3118 3119 # Update the trace 3120 trace = trace.update( 3121 output={"result": "success"}, 3122 metadata={"interface": "whatsapp"} 3123 ) 3124 ``` 3125 """ 3126 try: 3127 trace_body = { 3128 "id": self.id, 3129 "name": name, 3130 "userId": user_id, 3131 "sessionId": session_id 3132 or kwargs.get("sessionId", None), # backward compatibility 3133 "version": version, 3134 "release": release, 3135 "input": input, 3136 "output": output, 3137 "metadata": metadata, 3138 "public": public, 3139 "tags": tags, 3140 **kwargs, 3141 } 3142 self.log.debug(f"Update trace {_filter_io_from_event_body(trace_body)}...") 3143 3144 request = TraceBody(**trace_body) 3145 3146 event = { 3147 "id": str(uuid.uuid4()), 3148 "type": "trace-create", 3149 "body": request, 3150 } 3151 3152 self.task_manager.add_task(event) 3153 3154 except Exception as e: 3155 self.log.exception(e) 3156 finally: 3157 return StatefulTraceClient( 3158 self.client, 3159 self.id, 3160 StateType.TRACE, 3161 self.trace_id, 3162 self.task_manager, 3163 self.environment, 3164 ) 3165 3166 def get_langchain_handler(self, update_parent: bool = False): 3167 """Get langchain callback handler associated with the current trace. 3168 3169 This method creates and returns a CallbackHandler instance, linking it with the current 3170 trace. Use this if you want to group multiple Langchain runs within a single trace. 3171 3172 Args: 3173 update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run. 3174 3175 Raises: 3176 ImportError: If the 'langchain' module is not installed, indicating missing functionality. 3177 3178 Returns: 3179 CallbackHandler: Langchain callback handler linked to the current trace. 3180 3181 Example: 3182 ```python 3183 from langfuse import Langfuse 3184 3185 langfuse = Langfuse() 3186 3187 # Create a trace 3188 trace = langfuse.trace(name = "llm-feature") 3189 3190 # Get a langchain callback handler 3191 handler = trace.get_langchain_handler() 3192 ``` 3193 """ 3194 try: 3195 from langfuse.callback import CallbackHandler 3196 3197 self.log.debug(f"Creating new handler for trace {self.id}") 3198 3199 return CallbackHandler( 3200 stateful_client=self, 3201 debug=self.log.level == logging.DEBUG, 3202 update_stateful_client=update_parent, 3203 ) 3204 except Exception as e: 3205 self.log.exception(e) 3206 3207 def getNewHandler(self): 3208 """Alias for the `get_langchain_handler` method. Retrieves a callback handler for the trace. Deprecated.""" 3209 return self.get_langchain_handler()
Class for handling stateful operations of traces in the Langfuse system. Inherits from StatefulClient.
Attributes:
- client (FernLangfuse): Core interface for Langfuse API interaction.
- id (str): Unique identifier of the trace.
- state_type (StateType): Type of the stateful entity (observation or trace).
- trace_id (str): The trace ID associated with this client.
- task_manager (TaskManager): Manager for handling asynchronous tasks.
3061 def __init__( 3062 self, 3063 client: FernLangfuse, 3064 id: str, 3065 state_type: StateType, 3066 trace_id: str, 3067 task_manager: TaskManager, 3068 environment: Optional[str] = None, 3069 ): 3070 """Initialize the StatefulTraceClient.""" 3071 super().__init__(client, id, state_type, trace_id, task_manager, environment) 3072 self.task_manager = task_manager
Initialize the StatefulTraceClient.
3074 def update( 3075 self, 3076 *, 3077 name: typing.Optional[str] = None, 3078 user_id: typing.Optional[str] = None, 3079 session_id: typing.Optional[str] = None, 3080 version: typing.Optional[str] = None, 3081 release: typing.Optional[str] = None, 3082 input: typing.Optional[typing.Any] = None, 3083 output: typing.Optional[typing.Any] = None, 3084 metadata: typing.Optional[typing.Any] = None, 3085 tags: typing.Optional[typing.List[str]] = None, 3086 public: typing.Optional[bool] = None, 3087 **kwargs, 3088 ) -> "StatefulTraceClient": 3089 """Update the trace. 3090 3091 Args: 3092 name: Identifier of the trace. Useful for sorting/filtering in the UI. 3093 input: The input of the trace. Can be any JSON object. 3094 output: The output of the trace. Can be any JSON object. 3095 metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API. 3096 user_id: The id of the user that triggered the execution. Used to provide user-level analytics. 3097 session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier. 3098 version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging. 3099 release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging. 3100 tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API. 3101 public: You can make a trace `public` to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. 3102 **kwargs: Additional keyword arguments that can be included in the trace. 3103 3104 Returns: 3105 StatefulTraceClient: The updated trace. Passthrough for chaining. 3106 3107 Example: 3108 ```python 3109 from langfuse import Langfuse 3110 3111 langfuse = Langfuse() 3112 3113 # Create a trace 3114 trace = langfuse.trace( 3115 name="example-application", 3116 user_id="user-1234") 3117 ) 3118 3119 # Update the trace 3120 trace = trace.update( 3121 output={"result": "success"}, 3122 metadata={"interface": "whatsapp"} 3123 ) 3124 ``` 3125 """ 3126 try: 3127 trace_body = { 3128 "id": self.id, 3129 "name": name, 3130 "userId": user_id, 3131 "sessionId": session_id 3132 or kwargs.get("sessionId", None), # backward compatibility 3133 "version": version, 3134 "release": release, 3135 "input": input, 3136 "output": output, 3137 "metadata": metadata, 3138 "public": public, 3139 "tags": tags, 3140 **kwargs, 3141 } 3142 self.log.debug(f"Update trace {_filter_io_from_event_body(trace_body)}...") 3143 3144 request = TraceBody(**trace_body) 3145 3146 event = { 3147 "id": str(uuid.uuid4()), 3148 "type": "trace-create", 3149 "body": request, 3150 } 3151 3152 self.task_manager.add_task(event) 3153 3154 except Exception as e: 3155 self.log.exception(e) 3156 finally: 3157 return StatefulTraceClient( 3158 self.client, 3159 self.id, 3160 StateType.TRACE, 3161 self.trace_id, 3162 self.task_manager, 3163 self.environment, 3164 )
Update the trace.
Arguments:
- name: Identifier of the trace. Useful for sorting/filtering in the UI.
- input: The input of the trace. Can be any JSON object.
- output: The output of the trace. Can be any JSON object.
- metadata: Additional metadata of the trace. Can be any JSON object. Metadata is merged when being updated via the API.
- user_id: The id of the user that triggered the execution. Used to provide user-level analytics.
- session_id: Used to group multiple traces into a session in Langfuse. Use your own session/thread identifier.
- version: The version of the trace type. Used to understand how changes to the trace type affect metrics. Useful in debugging.
- release: The release identifier of the current deployment. Used to understand how changes of different deployments affect metrics. Useful in debugging.
- tags: Tags are used to categorize or label traces. Traces can be filtered by tags in the UI and GET API. Tags can also be changed in the UI. Tags are merged and never deleted via the API.
- public: You can make a trace
public
to share it via a public link. This allows others to view the trace without needing to log in or be members of your Langfuse project. - **kwargs: Additional keyword arguments that can be included in the trace.
Returns:
StatefulTraceClient: The updated trace. Passthrough for chaining.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace( name="example-application", user_id="user-1234") ) # Update the trace trace = trace.update( output={"result": "success"}, metadata={"interface": "whatsapp"} )
3166 def get_langchain_handler(self, update_parent: bool = False): 3167 """Get langchain callback handler associated with the current trace. 3168 3169 This method creates and returns a CallbackHandler instance, linking it with the current 3170 trace. Use this if you want to group multiple Langchain runs within a single trace. 3171 3172 Args: 3173 update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run. 3174 3175 Raises: 3176 ImportError: If the 'langchain' module is not installed, indicating missing functionality. 3177 3178 Returns: 3179 CallbackHandler: Langchain callback handler linked to the current trace. 3180 3181 Example: 3182 ```python 3183 from langfuse import Langfuse 3184 3185 langfuse = Langfuse() 3186 3187 # Create a trace 3188 trace = langfuse.trace(name = "llm-feature") 3189 3190 # Get a langchain callback handler 3191 handler = trace.get_langchain_handler() 3192 ``` 3193 """ 3194 try: 3195 from langfuse.callback import CallbackHandler 3196 3197 self.log.debug(f"Creating new handler for trace {self.id}") 3198 3199 return CallbackHandler( 3200 stateful_client=self, 3201 debug=self.log.level == logging.DEBUG, 3202 update_stateful_client=update_parent, 3203 ) 3204 except Exception as e: 3205 self.log.exception(e)
Get langchain callback handler associated with the current trace.
This method creates and returns a CallbackHandler instance, linking it with the current trace. Use this if you want to group multiple Langchain runs within a single trace.
Arguments:
- update_parent (bool): If set to True, the parent trace will be updated with the outcome of the Langchain run.
Raises:
- ImportError: If the 'langchain' module is not installed, indicating missing functionality.
Returns:
CallbackHandler: Langchain callback handler linked to the current trace.
Example:
from langfuse import Langfuse langfuse = Langfuse() # Create a trace trace = langfuse.trace(name = "llm-feature") # Get a langchain callback handler handler = trace.get_langchain_handler()
3207 def getNewHandler(self): 3208 """Alias for the `get_langchain_handler` method. Retrieves a callback handler for the trace. Deprecated.""" 3209 return self.get_langchain_handler()
Alias for the get_langchain_handler
method. Retrieves a callback handler for the trace. Deprecated.
Inherited Members
3212class DatasetItemClient: 3213 """Class for managing dataset items in Langfuse. 3214 3215 Args: 3216 id (str): Unique identifier of the dataset item. 3217 status (DatasetStatus): The status of the dataset item. Can be either 'ACTIVE' or 'ARCHIVED'. 3218 input (Any): Input data of the dataset item. 3219 expected_output (Optional[Any]): Expected output of the dataset item. 3220 metadata (Optional[Any]): Additional metadata of the dataset item. 3221 source_trace_id (Optional[str]): Identifier of the source trace. 3222 source_observation_id (Optional[str]): Identifier of the source observation. 3223 dataset_id (str): Identifier of the dataset to which this item belongs. 3224 dataset_name (str): Name of the dataset to which this item belongs. 3225 created_at (datetime): Timestamp of dataset item creation. 3226 updated_at (datetime): Timestamp of the last update to the dataset item. 3227 langfuse (Langfuse): Instance of Langfuse client for API interactions. 3228 3229 Example: 3230 ```python 3231 from langfuse import Langfuse 3232 3233 langfuse = Langfuse() 3234 3235 dataset = langfuse.get_dataset("<dataset_name>") 3236 3237 for item in dataset.items: 3238 # Generate a completion using the input of every item 3239 completion, generation = llm_app.run(item.input) 3240 3241 # Evaluate the completion 3242 generation.score( 3243 name="example-score", 3244 value=1 3245 ) 3246 ``` 3247 """ 3248 3249 log = logging.getLogger("langfuse") 3250 3251 id: str 3252 status: DatasetStatus 3253 input: typing.Any 3254 expected_output: typing.Optional[typing.Any] 3255 metadata: Optional[Any] 3256 source_trace_id: typing.Optional[str] 3257 source_observation_id: typing.Optional[str] 3258 dataset_id: str 3259 dataset_name: str 3260 created_at: dt.datetime 3261 updated_at: dt.datetime 3262 3263 langfuse: Langfuse 3264 3265 def __init__(self, dataset_item: DatasetItem, langfuse: Langfuse): 3266 """Initialize the DatasetItemClient.""" 3267 self.id = dataset_item.id 3268 self.status = dataset_item.status 3269 self.input = dataset_item.input 3270 self.expected_output = dataset_item.expected_output 3271 self.metadata = dataset_item.metadata 3272 self.source_trace_id = dataset_item.source_trace_id 3273 self.source_observation_id = dataset_item.source_observation_id 3274 self.dataset_id = dataset_item.dataset_id 3275 self.dataset_name = dataset_item.dataset_name 3276 self.created_at = dataset_item.created_at 3277 self.updated_at = dataset_item.updated_at 3278 3279 self.langfuse = langfuse 3280 3281 def flush(self, observation: StatefulClient, run_name: str): 3282 """Flushes an observations task manager's queue. 3283 3284 Used before creating a dataset run item to ensure all events are persistent. 3285 3286 Args: 3287 observation (StatefulClient): The observation or trace client associated with the dataset item. 3288 run_name (str): The name of the dataset run. 3289 """ 3290 observation.task_manager.flush() 3291 3292 def link( 3293 self, 3294 trace_or_observation: typing.Union[StatefulClient, str, None], 3295 run_name: str, 3296 run_metadata: Optional[Any] = None, 3297 run_description: Optional[str] = None, 3298 trace_id: Optional[str] = None, 3299 observation_id: Optional[str] = None, 3300 ): 3301 """Link the dataset item to observation within a specific dataset run. Creates a dataset run item. 3302 3303 Args: 3304 trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID. 3305 run_name (str): The name of the dataset run. 3306 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3307 run_description (Optional[str]): Description of the dataset run. 3308 trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided. 3309 observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided. 3310 """ 3311 parsed_trace_id: str = None 3312 parsed_observation_id: str = None 3313 3314 if isinstance(trace_or_observation, StatefulClient): 3315 # flush the queue before creating the dataset run item 3316 # to ensure that all events are persisted. 3317 if trace_or_observation.state_type == StateType.TRACE: 3318 parsed_trace_id = trace_or_observation.trace_id 3319 elif trace_or_observation.state_type == StateType.OBSERVATION: 3320 parsed_observation_id = trace_or_observation.id 3321 parsed_trace_id = trace_or_observation.trace_id 3322 # legacy support for observation_id 3323 elif isinstance(trace_or_observation, str): 3324 parsed_observation_id = trace_or_observation 3325 elif trace_or_observation is None: 3326 if trace_id is not None: 3327 parsed_trace_id = trace_id 3328 if observation_id is not None: 3329 parsed_observation_id = observation_id 3330 else: 3331 raise ValueError( 3332 "trace_id must be provided if trace_or_observation is None" 3333 ) 3334 else: 3335 raise ValueError( 3336 "trace_or_observation (arg) or trace_id (kwarg) must be provided to link the dataset item" 3337 ) 3338 3339 self.log.debug( 3340 f"Creating dataset run item: {run_name} {self.id} {parsed_trace_id} {parsed_observation_id}" 3341 ) 3342 self.langfuse.client.dataset_run_items.create( 3343 request=CreateDatasetRunItemRequest( 3344 runName=run_name, 3345 datasetItemId=self.id, 3346 traceId=parsed_trace_id, 3347 observationId=parsed_observation_id, 3348 metadata=run_metadata, 3349 runDescription=run_description, 3350 ) 3351 ) 3352 3353 def get_langchain_handler( 3354 self, 3355 *, 3356 run_name: str, 3357 run_description: Optional[str] = None, 3358 run_metadata: Optional[Any] = None, 3359 ): 3360 """Create and get a langchain callback handler linked to this dataset item. 3361 3362 Args: 3363 run_name (str): The name of the dataset run to be used in the callback handler. 3364 run_description (Optional[str]): Description of the dataset run. 3365 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3366 3367 Returns: 3368 CallbackHandler: An instance of CallbackHandler linked to the dataset item. 3369 """ 3370 metadata = { 3371 "dataset_item_id": self.id, 3372 "run_name": run_name, 3373 "dataset_id": self.dataset_id, 3374 } 3375 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3376 3377 self.link( 3378 trace, run_name, run_metadata=run_metadata, run_description=run_description 3379 ) 3380 3381 return trace.get_langchain_handler(update_parent=True) 3382 3383 @contextmanager 3384 def observe( 3385 self, 3386 *, 3387 run_name: str, 3388 run_description: Optional[str] = None, 3389 run_metadata: Optional[Any] = None, 3390 trace_id: Optional[str] = None, 3391 ): 3392 """Observes a dataset run within the Langfuse client. 3393 3394 Args: 3395 run_name (str): The name of the dataset run. 3396 root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created. 3397 run_description (Optional[str]): The description of the dataset run. 3398 run_metadata (Optional[Any]): Additional metadata for the dataset run. 3399 3400 Yields: 3401 StatefulTraceClient: The trace associated with the dataset run. 3402 """ 3403 from langfuse.decorators import langfuse_context 3404 3405 root_trace_id = trace_id or str(uuid.uuid4()) 3406 3407 langfuse_context._set_root_trace_id(root_trace_id) 3408 3409 try: 3410 yield root_trace_id 3411 3412 finally: 3413 self.link( 3414 run_name=run_name, 3415 run_metadata=run_metadata, 3416 run_description=run_description, 3417 trace_or_observation=None, 3418 trace_id=root_trace_id, 3419 ) 3420 3421 @contextmanager 3422 def observe_llama_index( 3423 self, 3424 *, 3425 run_name: str, 3426 run_description: Optional[str] = None, 3427 run_metadata: Optional[Any] = None, 3428 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3429 ): 3430 """Context manager for observing LlamaIndex operations linked to this dataset item. 3431 3432 This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging 3433 and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all 3434 operations performed within the context are linked to the appropriate dataset item and run in Langfuse. 3435 3436 Args: 3437 run_name (str): The name of the dataset run. 3438 run_description (Optional[str]): Description of the dataset run. Defaults to None. 3439 run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None. 3440 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass 3441 to the LlamaIndex integration constructor. Defaults to an empty dictionary. 3442 3443 Yields: 3444 LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations. 3445 3446 Example: 3447 ```python 3448 dataset_item = dataset.items[0] 3449 3450 with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: 3451 # Perform LlamaIndex operations here 3452 some_llama_index_operation() 3453 ``` 3454 3455 Raises: 3456 ImportError: If required modules for LlamaIndex integration are not available. 3457 """ 3458 metadata = { 3459 "dataset_item_id": self.id, 3460 "run_name": run_name, 3461 "dataset_id": self.dataset_id, 3462 } 3463 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3464 self.link( 3465 trace, run_name, run_metadata=run_metadata, run_description=run_description 3466 ) 3467 3468 try: 3469 import llama_index.core 3470 from llama_index.core import Settings 3471 from llama_index.core.callbacks import CallbackManager 3472 3473 from langfuse.llama_index import LlamaIndexCallbackHandler 3474 3475 callback_handler = LlamaIndexCallbackHandler( 3476 **llama_index_integration_constructor_kwargs, 3477 ) 3478 callback_handler.set_root(trace, update_root=True) 3479 3480 # Temporarily set the global handler to the new handler if previous handler is a LlamaIndexCallbackHandler 3481 # LlamaIndex does not adding two errors of same type, so if global handler is already a LlamaIndexCallbackHandler, we need to remove it 3482 prev_global_handler = llama_index.core.global_handler 3483 prev_langfuse_handler = None 3484 3485 if isinstance(prev_global_handler, LlamaIndexCallbackHandler): 3486 llama_index.core.global_handler = None 3487 3488 if Settings.callback_manager is None: 3489 Settings.callback_manager = CallbackManager([callback_handler]) 3490 else: 3491 for handler in Settings.callback_manager.handlers: 3492 if isinstance(handler, LlamaIndexCallbackHandler): 3493 prev_langfuse_handler = handler 3494 Settings.callback_manager.remove_handler(handler) 3495 3496 Settings.callback_manager.add_handler(callback_handler) 3497 3498 except Exception as e: 3499 self.log.exception(e) 3500 3501 try: 3502 yield callback_handler 3503 finally: 3504 # Reset the handlers 3505 Settings.callback_manager.remove_handler(callback_handler) 3506 if prev_langfuse_handler is not None: 3507 Settings.callback_manager.add_handler(prev_langfuse_handler) 3508 3509 llama_index.core.global_handler = prev_global_handler 3510 3511 def get_llama_index_handler( 3512 self, 3513 *, 3514 run_name: str, 3515 run_description: Optional[str] = None, 3516 run_metadata: Optional[Any] = None, 3517 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3518 ): 3519 """Create and get a llama-index callback handler linked to this dataset item. 3520 3521 Args: 3522 run_name (str): The name of the dataset run to be used in the callback handler. 3523 run_description (Optional[str]): Description of the dataset run. 3524 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3525 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor. 3526 3527 Returns: 3528 LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item. 3529 """ 3530 metadata = { 3531 "dataset_item_id": self.id, 3532 "run_name": run_name, 3533 "dataset_id": self.dataset_id, 3534 } 3535 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3536 3537 self.link( 3538 trace, run_name, run_metadata=run_metadata, run_description=run_description 3539 ) 3540 3541 try: 3542 from langfuse.llama_index.llama_index import LlamaIndexCallbackHandler 3543 3544 callback_handler = LlamaIndexCallbackHandler( 3545 **llama_index_integration_constructor_kwargs, 3546 ) 3547 callback_handler.set_root(trace, update_root=True) 3548 3549 return callback_handler 3550 except Exception as e: 3551 self.log.exception(e)
Class for managing dataset items in Langfuse.
Arguments:
- id (str): Unique identifier of the dataset item.
- status (DatasetStatus): The status of the dataset item. Can be either 'ACTIVE' or 'ARCHIVED'.
- input (Any): Input data of the dataset item.
- expected_output (Optional[Any]): Expected output of the dataset item.
- metadata (Optional[Any]): Additional metadata of the dataset item.
- source_trace_id (Optional[str]): Identifier of the source trace.
- source_observation_id (Optional[str]): Identifier of the source observation.
- dataset_id (str): Identifier of the dataset to which this item belongs.
- dataset_name (str): Name of the dataset to which this item belongs.
- created_at (datetime): Timestamp of dataset item creation.
- updated_at (datetime): Timestamp of the last update to the dataset item.
- langfuse (Langfuse): Instance of Langfuse client for API interactions.
Example:
from langfuse import Langfuse langfuse = Langfuse() dataset = langfuse.get_dataset("<dataset_name>") for item in dataset.items: # Generate a completion using the input of every item completion, generation = llm_app.run(item.input) # Evaluate the completion generation.score( name="example-score", value=1 )
3265 def __init__(self, dataset_item: DatasetItem, langfuse: Langfuse): 3266 """Initialize the DatasetItemClient.""" 3267 self.id = dataset_item.id 3268 self.status = dataset_item.status 3269 self.input = dataset_item.input 3270 self.expected_output = dataset_item.expected_output 3271 self.metadata = dataset_item.metadata 3272 self.source_trace_id = dataset_item.source_trace_id 3273 self.source_observation_id = dataset_item.source_observation_id 3274 self.dataset_id = dataset_item.dataset_id 3275 self.dataset_name = dataset_item.dataset_name 3276 self.created_at = dataset_item.created_at 3277 self.updated_at = dataset_item.updated_at 3278 3279 self.langfuse = langfuse
Initialize the DatasetItemClient.
3281 def flush(self, observation: StatefulClient, run_name: str): 3282 """Flushes an observations task manager's queue. 3283 3284 Used before creating a dataset run item to ensure all events are persistent. 3285 3286 Args: 3287 observation (StatefulClient): The observation or trace client associated with the dataset item. 3288 run_name (str): The name of the dataset run. 3289 """ 3290 observation.task_manager.flush()
Flushes an observations task manager's queue.
Used before creating a dataset run item to ensure all events are persistent.
Arguments:
- observation (StatefulClient): The observation or trace client associated with the dataset item.
- run_name (str): The name of the dataset run.
3292 def link( 3293 self, 3294 trace_or_observation: typing.Union[StatefulClient, str, None], 3295 run_name: str, 3296 run_metadata: Optional[Any] = None, 3297 run_description: Optional[str] = None, 3298 trace_id: Optional[str] = None, 3299 observation_id: Optional[str] = None, 3300 ): 3301 """Link the dataset item to observation within a specific dataset run. Creates a dataset run item. 3302 3303 Args: 3304 trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID. 3305 run_name (str): The name of the dataset run. 3306 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3307 run_description (Optional[str]): Description of the dataset run. 3308 trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided. 3309 observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided. 3310 """ 3311 parsed_trace_id: str = None 3312 parsed_observation_id: str = None 3313 3314 if isinstance(trace_or_observation, StatefulClient): 3315 # flush the queue before creating the dataset run item 3316 # to ensure that all events are persisted. 3317 if trace_or_observation.state_type == StateType.TRACE: 3318 parsed_trace_id = trace_or_observation.trace_id 3319 elif trace_or_observation.state_type == StateType.OBSERVATION: 3320 parsed_observation_id = trace_or_observation.id 3321 parsed_trace_id = trace_or_observation.trace_id 3322 # legacy support for observation_id 3323 elif isinstance(trace_or_observation, str): 3324 parsed_observation_id = trace_or_observation 3325 elif trace_or_observation is None: 3326 if trace_id is not None: 3327 parsed_trace_id = trace_id 3328 if observation_id is not None: 3329 parsed_observation_id = observation_id 3330 else: 3331 raise ValueError( 3332 "trace_id must be provided if trace_or_observation is None" 3333 ) 3334 else: 3335 raise ValueError( 3336 "trace_or_observation (arg) or trace_id (kwarg) must be provided to link the dataset item" 3337 ) 3338 3339 self.log.debug( 3340 f"Creating dataset run item: {run_name} {self.id} {parsed_trace_id} {parsed_observation_id}" 3341 ) 3342 self.langfuse.client.dataset_run_items.create( 3343 request=CreateDatasetRunItemRequest( 3344 runName=run_name, 3345 datasetItemId=self.id, 3346 traceId=parsed_trace_id, 3347 observationId=parsed_observation_id, 3348 metadata=run_metadata, 3349 runDescription=run_description, 3350 ) 3351 )
Link the dataset item to observation within a specific dataset run. Creates a dataset run item.
Arguments:
- trace_or_observation (Union[StatefulClient, str, None]): The trace or observation object to link. Deprecated: can also be an observation ID.
- run_name (str): The name of the dataset run.
- run_metadata (Optional[Any]): Additional metadata to include in dataset run.
- run_description (Optional[str]): Description of the dataset run.
- trace_id (Optional[str]): The trace ID to link to the dataset item. Set trace_or_observation to None if trace_id is provided.
- observation_id (Optional[str]): The observation ID to link to the dataset item (optional). Set trace_or_observation to None if trace_id is provided.
3353 def get_langchain_handler( 3354 self, 3355 *, 3356 run_name: str, 3357 run_description: Optional[str] = None, 3358 run_metadata: Optional[Any] = None, 3359 ): 3360 """Create and get a langchain callback handler linked to this dataset item. 3361 3362 Args: 3363 run_name (str): The name of the dataset run to be used in the callback handler. 3364 run_description (Optional[str]): Description of the dataset run. 3365 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3366 3367 Returns: 3368 CallbackHandler: An instance of CallbackHandler linked to the dataset item. 3369 """ 3370 metadata = { 3371 "dataset_item_id": self.id, 3372 "run_name": run_name, 3373 "dataset_id": self.dataset_id, 3374 } 3375 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3376 3377 self.link( 3378 trace, run_name, run_metadata=run_metadata, run_description=run_description 3379 ) 3380 3381 return trace.get_langchain_handler(update_parent=True)
Create and get a langchain callback handler linked to this dataset item.
Arguments:
- run_name (str): The name of the dataset run to be used in the callback handler.
- run_description (Optional[str]): Description of the dataset run.
- run_metadata (Optional[Any]): Additional metadata to include in dataset run.
Returns:
CallbackHandler: An instance of CallbackHandler linked to the dataset item.
3383 @contextmanager 3384 def observe( 3385 self, 3386 *, 3387 run_name: str, 3388 run_description: Optional[str] = None, 3389 run_metadata: Optional[Any] = None, 3390 trace_id: Optional[str] = None, 3391 ): 3392 """Observes a dataset run within the Langfuse client. 3393 3394 Args: 3395 run_name (str): The name of the dataset run. 3396 root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created. 3397 run_description (Optional[str]): The description of the dataset run. 3398 run_metadata (Optional[Any]): Additional metadata for the dataset run. 3399 3400 Yields: 3401 StatefulTraceClient: The trace associated with the dataset run. 3402 """ 3403 from langfuse.decorators import langfuse_context 3404 3405 root_trace_id = trace_id or str(uuid.uuid4()) 3406 3407 langfuse_context._set_root_trace_id(root_trace_id) 3408 3409 try: 3410 yield root_trace_id 3411 3412 finally: 3413 self.link( 3414 run_name=run_name, 3415 run_metadata=run_metadata, 3416 run_description=run_description, 3417 trace_or_observation=None, 3418 trace_id=root_trace_id, 3419 )
Observes a dataset run within the Langfuse client.
Arguments:
- run_name (str): The name of the dataset run.
- root_trace (Optional[StatefulTraceClient]): The root trace client to use for the dataset run. If not provided, a new trace client will be created.
- run_description (Optional[str]): The description of the dataset run.
- run_metadata (Optional[Any]): Additional metadata for the dataset run.
Yields:
StatefulTraceClient: The trace associated with the dataset run.
3421 @contextmanager 3422 def observe_llama_index( 3423 self, 3424 *, 3425 run_name: str, 3426 run_description: Optional[str] = None, 3427 run_metadata: Optional[Any] = None, 3428 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3429 ): 3430 """Context manager for observing LlamaIndex operations linked to this dataset item. 3431 3432 This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging 3433 and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all 3434 operations performed within the context are linked to the appropriate dataset item and run in Langfuse. 3435 3436 Args: 3437 run_name (str): The name of the dataset run. 3438 run_description (Optional[str]): Description of the dataset run. Defaults to None. 3439 run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None. 3440 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass 3441 to the LlamaIndex integration constructor. Defaults to an empty dictionary. 3442 3443 Yields: 3444 LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations. 3445 3446 Example: 3447 ```python 3448 dataset_item = dataset.items[0] 3449 3450 with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: 3451 # Perform LlamaIndex operations here 3452 some_llama_index_operation() 3453 ``` 3454 3455 Raises: 3456 ImportError: If required modules for LlamaIndex integration are not available. 3457 """ 3458 metadata = { 3459 "dataset_item_id": self.id, 3460 "run_name": run_name, 3461 "dataset_id": self.dataset_id, 3462 } 3463 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3464 self.link( 3465 trace, run_name, run_metadata=run_metadata, run_description=run_description 3466 ) 3467 3468 try: 3469 import llama_index.core 3470 from llama_index.core import Settings 3471 from llama_index.core.callbacks import CallbackManager 3472 3473 from langfuse.llama_index import LlamaIndexCallbackHandler 3474 3475 callback_handler = LlamaIndexCallbackHandler( 3476 **llama_index_integration_constructor_kwargs, 3477 ) 3478 callback_handler.set_root(trace, update_root=True) 3479 3480 # Temporarily set the global handler to the new handler if previous handler is a LlamaIndexCallbackHandler 3481 # LlamaIndex does not adding two errors of same type, so if global handler is already a LlamaIndexCallbackHandler, we need to remove it 3482 prev_global_handler = llama_index.core.global_handler 3483 prev_langfuse_handler = None 3484 3485 if isinstance(prev_global_handler, LlamaIndexCallbackHandler): 3486 llama_index.core.global_handler = None 3487 3488 if Settings.callback_manager is None: 3489 Settings.callback_manager = CallbackManager([callback_handler]) 3490 else: 3491 for handler in Settings.callback_manager.handlers: 3492 if isinstance(handler, LlamaIndexCallbackHandler): 3493 prev_langfuse_handler = handler 3494 Settings.callback_manager.remove_handler(handler) 3495 3496 Settings.callback_manager.add_handler(callback_handler) 3497 3498 except Exception as e: 3499 self.log.exception(e) 3500 3501 try: 3502 yield callback_handler 3503 finally: 3504 # Reset the handlers 3505 Settings.callback_manager.remove_handler(callback_handler) 3506 if prev_langfuse_handler is not None: 3507 Settings.callback_manager.add_handler(prev_langfuse_handler) 3508 3509 llama_index.core.global_handler = prev_global_handler
Context manager for observing LlamaIndex operations linked to this dataset item.
This method sets up a LlamaIndex callback handler that integrates with Langfuse, allowing detailed logging and tracing of LlamaIndex operations within the context of a specific dataset run. It ensures that all operations performed within the context are linked to the appropriate dataset item and run in Langfuse.
Arguments:
- run_name (str): The name of the dataset run.
- run_description (Optional[str]): Description of the dataset run. Defaults to None.
- run_metadata (Optional[Any]): Additional metadata for the dataset run. Defaults to None.
- llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Keyword arguments to pass to the LlamaIndex integration constructor. Defaults to an empty dictionary.
Yields:
LlamaIndexCallbackHandler: The callback handler for LlamaIndex operations.
Example:
dataset_item = dataset.items[0] with dataset_item.observe_llama_index(run_name="example-run", run_description="Example LlamaIndex run") as handler: # Perform LlamaIndex operations here some_llama_index_operation()
Raises:
- ImportError: If required modules for LlamaIndex integration are not available.
3511 def get_llama_index_handler( 3512 self, 3513 *, 3514 run_name: str, 3515 run_description: Optional[str] = None, 3516 run_metadata: Optional[Any] = None, 3517 llama_index_integration_constructor_kwargs: Optional[Dict[str, Any]] = {}, 3518 ): 3519 """Create and get a llama-index callback handler linked to this dataset item. 3520 3521 Args: 3522 run_name (str): The name of the dataset run to be used in the callback handler. 3523 run_description (Optional[str]): Description of the dataset run. 3524 run_metadata (Optional[Any]): Additional metadata to include in dataset run. 3525 llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor. 3526 3527 Returns: 3528 LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item. 3529 """ 3530 metadata = { 3531 "dataset_item_id": self.id, 3532 "run_name": run_name, 3533 "dataset_id": self.dataset_id, 3534 } 3535 trace = self.langfuse.trace(name="dataset-run", metadata=metadata) 3536 3537 self.link( 3538 trace, run_name, run_metadata=run_metadata, run_description=run_description 3539 ) 3540 3541 try: 3542 from langfuse.llama_index.llama_index import LlamaIndexCallbackHandler 3543 3544 callback_handler = LlamaIndexCallbackHandler( 3545 **llama_index_integration_constructor_kwargs, 3546 ) 3547 callback_handler.set_root(trace, update_root=True) 3548 3549 return callback_handler 3550 except Exception as e: 3551 self.log.exception(e)
Create and get a llama-index callback handler linked to this dataset item.
Arguments:
- run_name (str): The name of the dataset run to be used in the callback handler.
- run_description (Optional[str]): Description of the dataset run.
- run_metadata (Optional[Any]): Additional metadata to include in dataset run.
- llama_index_integration_constructor_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments to pass to the LlamaIndex integration constructor.
Returns:
LlamaIndexCallbackHandler: An instance of LlamaIndexCallbackHandler linked to the dataset item.
3554class DatasetClient: 3555 """Class for managing datasets in Langfuse. 3556 3557 Attributes: 3558 id (str): Unique identifier of the dataset. 3559 name (str): Name of the dataset. 3560 description (Optional[str]): Description of the dataset. 3561 metadata (Optional[typing.Any]): Additional metadata of the dataset. 3562 project_id (str): Identifier of the project to which the dataset belongs. 3563 dataset_name (str): Name of the dataset. 3564 created_at (datetime): Timestamp of dataset creation. 3565 updated_at (datetime): Timestamp of the last update to the dataset. 3566 items (List[DatasetItemClient]): List of dataset items associated with the dataset. 3567 runs (List[str]): List of dataset runs associated with the dataset. Deprecated. 3568 3569 Example: 3570 Print the input of each dataset item in a dataset. 3571 ```python 3572 from langfuse import Langfuse 3573 3574 langfuse = Langfuse() 3575 3576 dataset = langfuse.get_dataset("<dataset_name>") 3577 3578 for item in dataset.items: 3579 print(item.input) 3580 ``` 3581 """ 3582 3583 id: str 3584 name: str 3585 description: Optional[str] 3586 project_id: str 3587 dataset_name: str # for backward compatibility, to be deprecated 3588 metadata: Optional[Any] 3589 created_at: dt.datetime 3590 updated_at: dt.datetime 3591 items: typing.List[DatasetItemClient] 3592 runs: typing.List[str] = [] # deprecated 3593 3594 def __init__(self, dataset: Dataset, items: typing.List[DatasetItemClient]): 3595 """Initialize the DatasetClient.""" 3596 self.id = dataset.id 3597 self.name = dataset.name 3598 self.description = dataset.description 3599 self.project_id = dataset.project_id 3600 self.metadata = dataset.metadata 3601 self.dataset_name = dataset.name # for backward compatibility, to be deprecated 3602 self.created_at = dataset.created_at 3603 self.updated_at = dataset.updated_at 3604 self.items = items
Class for managing datasets in Langfuse.
Attributes:
- id (str): Unique identifier of the dataset.
- name (str): Name of the dataset.
- description (Optional[str]): Description of the dataset.
- metadata (Optional[typing.Any]): Additional metadata of the dataset.
- project_id (str): Identifier of the project to which the dataset belongs.
- dataset_name (str): Name of the dataset.
- created_at (datetime): Timestamp of dataset creation.
- updated_at (datetime): Timestamp of the last update to the dataset.
- items (List[DatasetItemClient]): List of dataset items associated with the dataset.
- runs (List[str]): List of dataset runs associated with the dataset. Deprecated.
Example:
Print the input of each dataset item in a dataset.
from langfuse import Langfuse langfuse = Langfuse() dataset = langfuse.get_dataset("<dataset_name>") for item in dataset.items: print(item.input)
3594 def __init__(self, dataset: Dataset, items: typing.List[DatasetItemClient]): 3595 """Initialize the DatasetClient.""" 3596 self.id = dataset.id 3597 self.name = dataset.name 3598 self.description = dataset.description 3599 self.project_id = dataset.project_id 3600 self.metadata = dataset.metadata 3601 self.dataset_name = dataset.name # for backward compatibility, to be deprecated 3602 self.created_at = dataset.created_at 3603 self.updated_at = dataset.updated_at 3604 self.items = items
Initialize the DatasetClient.